
Table of Contents

µWelcome to FoxPro! 5

Using the Migration Kit 5

Section I: dBASE IV

Migrating dBASE applications: an overview 6

Steps to take 6

Using dBASE database, memo, and index files 6

Databases 6

Memo files 7

Indexes 7

Using dBASE queries 7

Running the Migration Tools 9

Converting screens, reports, and labels 10

The File Converter 10

Screen files 11

Converting FMTs and PRGs 11

Using dBASE reports 12

Labels 14

Addressing dBASE language compatibility issues 15

Overview 15

A note on dBASE IV Applications Generator applications 15

Major compatibility issues 15

Ways to fix possible problems 16

SET COMPATIBLE 16

Calling user-defined functions (UDFs) 17

Non-syntax issues 17

Parameter passing 17

Reading keystrokes 17

Hard-coded file extensions 18

Alphabetical list of potential dBASE IV issues 18

FoxPro Migration Guide Page 1

Section II: Clipper Summer '87

Migrating Clipper Summer '87 applications: an overview 57

Steps to take 57

A note on Clipper 5.x applications 57

Using Clipper database, memo, and index files 57

Databases 57

Memo files 57

Indexes 58

.NDX indexes 58

.NTX indexes 58

Choosing a database 59

Selecting an index type 59

Creating FoxPro screen files from .FMT and .PRG files 60

Reports and Labels 60

Visibility of functions and procedures 61

"Extracting" functions and procedures 61

Single procedure file or multiple .PRGs 62

Addressing Clipper language compatibility issues 63

Overview 63

Other compatibility issues 63

Function Calls 64

ACHOICE(), DBEDIT(), and MEMOEDIT() 64

Error handling65

Error handling FoxPro-style 65

Simulating BEGIN SEQUENCE...[BREAK]...END in FoxPro 66

Third party libraries 68

Arrays 68

Color 68

Other compatibility issues 69

Windows Specific Problems 69

Printing 69

ASCII character set. 69

Page 2 FoxPro Migration Guide

Binary functions 69

SET commands 69

Keystrokes 70

Alphabetical list of potential Clipper issues 70

FoxPro Migration Guide Page 3

Section III: Using the Program Analyzer

Using the Program Analyzer 103

What the Program Analyzer does 103

New Analysis 103

Processing files 104

Disk space requirements 104

Settings 104

Open Analysis105

The Program Analyzer interface 105

Filtering and Sorting 106

Jumping to potential problem areas from the Program Analyzer 106

Using your own text editor 107

Help 107

Reports 108

Viewing the issues database 108

After addressing the issues in the Program Analyzer list 108

FoxPro Projects 109

Appendices 110

Appendix A: Effects of the SET COMPATIBLE command 110

Appendix B: dBASE file types and what to do with them 115

Appendix C: dBASE error numbers that represent different errors in FoxPro 117

Appendix D: Same errors with different numbers 120

Appendix E: Network and security libraries 121

Appendix F: Clipper 5.x incompatabilities 131

Appendix G: Key assignments 132

FoxPro ON KEY LABEL KEY assignments132

INKEY() codes for FoxPro, dBASE and Clipper Summer '87 133

Appendix I: FoxPro Reserved Words136

INDEX 140

Page 4 FoxPro Migration Guide

Copyright Ó 1993 by Microsoft Corporation. All rights reserved.

Microsoft, FoxPro, MS-DOS, are registered trademarks and Windows and Rushmore are trademarks of Microsoft
Corporation. dBASE, dBASE III Plus, and dBASE IV are registered trademarks of Borland International, Inc.
NetWare is a registered trademark of Novell, Inc. Clipper is a registered trademark of Computer Associates
International, Inc. All other product names used herein are used for identification purposes only and may be
trademarks of their respective companies.

Acknowledgments
Many thanks to the following people who contributed to this version of the FoxPro
Migration Kit:

Menachem Bazian
Flash Creative
Management
River Edge, NJ
201-489-4680

Ron Dennis
HB Software &
Services
Redondo Beach, CA
310-372-4932

Miriam Liskin
Berkeley, CA
510-644-3259

Marc Schnapp
Primary Key
Consulting
El Sobrante, CA
510-223-1815

Randy Brown
Sierra Systems
Kensington, CA
510-526-0393

Russell Freeland
Synergy Corp.
Ft. Lauderdale, FL
305-792-1866

Dan Madoni
Microsoft
Redmond, WA

FoxPro Migration Guide Page 5

Andrew Coupe
Microsoft
Washington, D.C.

Bill French
Global Technologies
Aurora, CO
303-337-7758

Tina Newton
Ph.Data
New York, NY
212-473-1261

Page 6 FoxPro Migration Guide

Welcome to FoxPro!
There are many reasons to move to Microsoft FoxPro: unsurpassed speed, better tools,
reliability, and, because FoxPro 2.5 is available for both MS-DOSÒ and Microsoft
Windowsä, a powerful cross-platform capability. And finally, it preserves your current
investment in Xbase knowledge, data, and applications while moving you forward to take
advantage of today's technology.

This Migration Kit is designed to make your move to FoxPro as simple as possible.
FoxPro 2.5 for MS-DOS and FoxPro 2.5 for Windows will run dBASE III PlusÒ
applications unchanged. FoxPro is a full superset of dBASE III Plus commands and
functions. dBASE IV applications might run in FoxPro unchanged as well. However,
dBASE IV diverged from the dBASE III Plus standard. Applications that use dBASE
IV-specific features might need to be modified. The same is true of Clipper Summer '87
applications, which is why we created this Migration Kit.

Together, the native capabilities of FoxPro and the Migration Kit allow you to migrate
your files to FoxPro and enjoy the immediate benefits of FoxPro speed and reliability.
And you'll soon discover the many benefits FoxPro provides such as better tools, full
mouse support, and the ability to move between multiple design surfaces in a windowing
environment.

Using the Migration Kit
The Migration Kit supports migration of dBASE IV (version 2.0 and earlier) and Clipper
Summer '87 applications. Clipper 5.x differs greatly from FoxPro and is not supported.
The Kit contains an application written in FoxPro 2.5 called the Migration Tools which
converts many types of dBASE IV and Clipper Summer '87 files. The application also
analyzes program files for code that might not run properly in FoxPro.

The Migration Tools run in both FoxPro 2.5 for MS-DOS and FoxPro 2.5 for Windows.
The application will not run in FoxPro 2.0 or FoxPro 2.5 on platforms other than MS-
DOS and Microsoft Windows.

The Migration Kit also includes this Migration Guide. The Guide explains the migration
process, how to use the Migration Kit software, and how to modify your programs so
they run correctly in FoxPro. The Guide is divided into three main sections:

I. Migrating dBASE applications

II. Migrating Clipper applications

III. Using the Program Analyzer

Whether you're migrating a dBASE or a Clipper application, you'll need to read through
the "Using the Program Analyzer" section. You should first read the appropriate section
(dBASE or Clipper) on migrating applications and other files.

Migrating dBASE IV applications

Migrating dBASE applications: an overview
Your investment in dBASE consists of several different kinds of files: databases, queries,
forms, reports, labels, and programs. All of these can be migrated to FoxPro.

FoxPro uses the same database file format as dBASE, so you can use your databases
right away. You can run dBASE queries (.QBE files) in FoxPro after slight
modification.

Using Migration Kit tools, you can quickly and easily convert dBASE screens, reports,
and labels to their FoxPro equivalents. Format files (.FMTs) from dBASE work in
FoxPro too, though some might need modifications in certain instances.

dBASE program files (.PRGs) may run unchanged in FoxPro but probably use at least a
few commands and functions that depart from the dBASE III Plus standard. The
Migration Kit's Program Analyzer helps identify these key words and suggests ways you
can change your program so it runs correctly in FoxPro.

The time it takes to migrate an application will vary. In many cases it will take no time
at all. In all cases, your patience will be greatly rewarded with faster program execution,
greater reliability, and, if you have FoxPro 2.5 for Windows, the ability to turn your
existing programs into true Windows-based applications.

Steps to take
The migration process boils down to the following steps:

1. First, create a backup copy of all your files. Do not work on your original files!

2. Bring databases into FoxPro.

3. Modify query files.

4. Using the File Converter, convert all screens, reports, and labels.

5. Use the Program Analyzer to find and address areas of potential incompatibility.

6. If used by your program, check to see if your .FMT files need to be modified.

7. Enjoy the speed and power of Microsoft FoxPro!

Not all your dBASE files are necessary to run an application in FoxPro, only
databases, screens, reports, labels, and programs. Appendix B lists each type of
dBASE file and how you should handle them in the migration process.

Using dBASE database, memo, and index files

DatabasesXE "Databases"§
FoxPro uses the same native file format (.DBFXE ".DBF"§) for databases as dBASE, so
you can use your data right away, without any conversion. This is true of dBASE III
PLUS databases as well. If files are encrypted, however, they must first be unencrypted
before FoxPro can read them.

Migrating dBASE IV applications

Simply type USE <database name> in the Command window or choose File...Open from
the menus and you can begin browsing and analyzing your dBASE database.

Migrating dBASE IV applications

Memo files
The XE "Memo files"§FoxPro file format for memo fields allows you to store an
unlimited amount of data in a memo field. (You're limited by disk space, of course.)
When you open a dBASE IV database that has an associated memo file in FoxPro, you
are asked whether you want to convert the memo file. If you say yes, FoxPro converts
the memo file to the FoxPro format (.FPT) and erases the original dBASE file (.DBTXE
".DBT"§). (Note that the database must be opened in exclusive mode in order to convert
the files. In FoxPro, EXCLUSIVE is on by default.)

You must say yes, as FoxPro will not read a database with a dBASE memo field unless
you allow FoxPro to convert the memo field to .FPT format.

After a memo field has been converted to FoxPro format, dBASE will not be able to read
the .DBF file associated with the memo field. However, FoxPro can easily convert
a .DBF and associated FoxPro memo field to a .DBF and .DBT memo field that dBASE
IV can read. Use the command COPY TO <database name> TYPE FOXPLUS.

IndexesXE "Indexes"§
FoxPro uses a more efficient indexing scheme that results in better performance as well
as index fields of one-half to one-third the size of dBASE indexes. FoxPro automatically
converts .MDXXE ".MDX"§ index tags to create an equivalent structural .CDX index.
The conversion leaves the dBASE indexes intact. The FoxPro structural .CDX is opened
automatically just like an .MDX when a database is used.

FoxPro doesn't automatically convert .NDXXE ".NDX"§ indexes. However, a USE
command that names .NDX indexes or a SET INDEX TO command that opens an .NDX
index will cause FoxPro to convert the named indexes. .NDX indexes are converted to
FoxPro .IDX indexes.

Using dBASE queriesXE "Queries"§
A dBASE query is a file with the .QBEXE ".QBE"§ extension that consists primarily of
the dBASE IV commands required to execute the query. With minor changes, this file
can be run in FoxPro as a program and return the same results as dBASE. However, you
won't be able modify this query using the FoxPro query tool (Relational Query By
Example, or RQBE). You would have to modify the commands in the .QBE file
directly. Queries created in the FoxPro RQBE are stored as SQL commands, making
them more succinct and faster to execute.

Before modifying a .QBE file, make a copy if you want to continue to run the query in
dBASE IV.

Migrating dBASE IV applications

To convert a .QBE into a program that can be run in FoxPro, take the following steps:

1. In FoxPro, choose File...Open from the menus.
2. Select Program as the type of file.
3. Select the Show all files check box.
4. Open a dBASE query (.QBE file).
5. Scroll down in the text editor to the first non-text or "garbage" character.
6. Delete all such characters.
7. Close the file, saving changes.

µ §

The highlighted "garbage" characters should be deleted.

Now you can run the query using the DO command. Be sure to include the .QBE file
extension. dBASE IV queries issue a SET EXACT ON command but do not issue a SET
EXACT OFF command at the end. When you close the database environment created by
the query, return SET EXACT to its previous state.

Queries that open and link databases, specify a sort order, and specify selection criteria
run without problem. Queries that compute summary statistics can contain several
conditional tests and processing loops that might cause problems in FoxPro. You can
recreate these queries very quickly in the FoxPro Relational Query by Example (RQBE)
tool and be able to modify them later. Possible incompatibilities in .QBE files are:

· SET FIELDSXE "SET FIELDS"§ command
· TAGNOXE "TAGNO()"§ function
· NOSAVEXE "NOSAVE"§ option in USE command (version 1.5 only)
· SET CATALOGXE "SET CATALOG"§ TO
· SET("CATALOG")XE "SET(\"CATALOG\")"§ function
SET FIELDS behaves differently in FoxPro than in dBASE. For more information,

see SET FIELDS in the section titled "Alphabetical list of potential dBASE IV
issues."

Also, while FoxPro does not natively support the TAGNO function, this kit contains a
user-defined function that provides the exact same functionality. As long as this UDF is
available to the query program, the TAGNO function will not cause any problems. See
the section titled "Calling user-defined functions (UDFs)."

Migrating dBASE IV applications

FoxPro does not have a NOSAVE option in the USE command. To have the query
delete files created during query execution, save the names of temporary files and delete
them at the end of the query program, as in the example below:

temp_file=SYS(3)+".dbf" &&Create unique filename with .DBF extension
<<execute code>>
delete file (temp_file)

Running the Migration Tools
The Migration Tools provided in this kit are comprised of the File Converter and
Program Analyzer, both written in FoxPro. To install these tools, create a subdirectory
named MIGRATE in your FoxPro directory. Copy all the files from the Migration Kit
floppy disk to the MIGRATE subdirectory.

To run the Migration Tools, select the Do command from the Program menu. In the
resulting file dialog box, change to the MIGRATE subdirectory and select
MIGRATE.APP. Alternately, you can type DO MIGRATE.APP in the Command
window. Make sure you set the default directory to the directory where MIGRATE.APP
resides.

After you DO MIGRATE.APP, a new pad called Migration Tools is placed on the
FoxPro menus.

µ §

The command DO MIGRATE.APP starts the Migration Tools application and adds a pad to the FoxPro menus.

All the Migration Tools, the File Converter and the Program Analyzer, can be accessed
from the Migration Tools menu. While the Migration Tools are running, some other
menus will be disabled. To remove the Migration Tools menu and reactivate these
menus, choose Close Tools from the Migration Tools menu.

Migrating dBASE IV applications

Converting screens, reports, and labels

The File ConverterXE "File Converter"§
The process for converting screens (.SCRXE ".SCR"§s), format files (as well as PRGs
with @SAYs and GETs), reports (.FRMXE ".FRM"§s) and labels (.LBLXE ".LBL"§s) is
the same for each type of file. From the Migration Tools menu, choose Convert Files.
This brings up a dialog box that displays all the files in the current directory
with .SCR, .FMT, .PRG, .FRM, and .LBL extensions. Files with the .NTX extension
will also be displayed. These are Clipper index files and which do not concern us here.

µ §
Select the screens, reports, and labels to be converted from the File Converter dialog.

To select a file for conversion, either double-click on the filename, or highlight it and
then press ENTER. Selected files will have an asterisk placed next to the filename on the
left (or a check mark in FoxPro 2.5 for MS-DOS). You can select all the files in a
directory for processing by clicking the Select All button, or you can start over by
clicking the Clear All button. To cancel selection of a single file, double-click on the
filename, or highlight it and press the ENTER key. The File Converter allows you to
select a mix of .SCRs, .FRMs, and .LBLs for processing at the same time.

To convert files in another directory, click the Directory button and move to a new
directory. To convert files in multiple directories, first select and convert the files in one
directory, and then select and convert files in another directory.

When you have finished selecting files, click the Process button. The FoxPro File
Converter goes to work. Screens and files with @SAYs and GETs (.SCRs, .FMTs,
and .PRGs) are converted to the FoxPro .SCX format. Report files (.FRMs) are
converted to FoxPro .FRX format, and labels (.LBLs) are converted to .LBX format.
These new files are saved in the same directory as the original files (which are left
intact).

To modify a new FoxPro screen, report, or label, simply choose File...Open from the
menus. Select the file type and the file you wish to edit. FoxPro will then launch the
appropriate tool. For more information about the FoxPro Power Tools, see the User's
Guide included in the FoxPro 2.5 documentation.

Migrating dBASE IV applications

ScreenXE "Screens"§ files
Converting SCRs

The File ConverterXE "File Converter"§ preserves @SAYS and GETS, PICTURE
clauses, WHEN and VALID clauses, whether a field is editable or not editable, ERROR
messages, PROMPT messages, RANGE, default values, multiple-choice lists, as well as
boxes and lines. Individual field colors and other style attributes are not preserved,
though all other color attributes are retained.

Screen files are written in FoxPro 2.5 for MS-DOS format. If the file is opened for
modification in FoxPro for Windows, FoxPro will ask whether you want to transport the
screen to Windows. In most cases, you will want to say yes so the screen looks like a
Windows-based screen and not an MS-DOS-based screen. Refer to the Developer's
Guide in the FoxPro 2.5 documentation for more information about FoxPro's powerful
cross-platform capabilities.

Converting multiple-page SCRs

The File Converter will convert multiple-page dBASE screens. Multiple-page screens
should be converted into separate screens. Each screen should be saved separately as part
of a screen set. Pressing page down in one screen of a screen set takes the user to the
next screen in the set. To create separate screens, begin with the converted file. Delete
everything except for one page of the screen and save it as a new file. Repeat this
process with the other pages of the screen.

Converting FMTs and PRGs
To take full advantage of FoxPro and its windowing environment, it is best to convert
format files and PRGs with @SAYs and GETs to FoxPro screen files. The file converter
will take program and format files and create SCX files. When converting @SAY
commands, the picture, function, range, valid, when, color, and message clauses are
preserved.

When the converter processes an FMT or PRG file, the following dialog appears:

µ §

The dialog says which file is being created (INVOICE.SCX in this case). The file name
is the same as the original file with an .SCX extension. The dialog gives you the

opportunity to associate a database with the SCX file that's going to be created. If you
associate a database with the SCX file, FoxPro will automatically open and close that

database for you when the screen is run or opened for modification--a great convenience.

To associate a database with an .SCX, click the Choose... button. This brings up a file
dialog that allows you to select any database on your local hard drive or the network.
Then click the OK button and the new file will be created. Note the OK button is
disabled until a valid database file has been chosen. You may, however, click the Cancel
button or press ESC to avoid converting a particular file.

Migrating dBASE IV applications

If you don't want to associate a database with the new screen, click the None button and
the new file will be created without any association.

As with SCRs, FMTs and PRGs are converted to FoxPro 2.5 for DOS files. If you open
these files in FoxPro Windows you will be asked if you wish to transport the converted
files. Ordinarily, you will want to press the "Transport and Open" button.

To convert multiple-screen format files, you need to break the file into multiple files
because the converter will stop after it encounters the first READ statement.

Modifying format filesXE "Format files"§XE "format files"§ which you choose not
to convert

FoxPro supports dBASE format files (.FMTXE ".FMT"§s) and related commands such
as SET FORMAT. Some dBASE IV format files have setup and cleanup code. Format
files with key words other than @SAYs and @GETs won't work in FoxPro. If you
choose not to convert your format files to FoxPro screens, the setup and cleanup code
needs to be moved outside the format file. For example, setup code could be placed
before the SET FORMAT command, and the cleanup code after it.

Using dBASE reportsXE "Reports"§
There are two possible approaches to using dBASE reports in FoxPro. You can run
an .FRG file or you can convert an .FRMXE ".FRM"§ file. If you will only be using
FoxPro 2.5 for MS-DOS and you're not planning to modify the report, running the .FRG
file is often the best idea.

If you have FoxPro 2.5 for Windows or you plan to alter the report, converting the .FRM
is the recommended action.

Effects of the conversion process

All bands, fields, calculated fields, hidden fields, picture templates, and functions for
fields are converted. So are style attributes such as underline, bold, italic, and colors.
Fonts are not converted. However FoxPro for Windows supports all Windows-based
fonts including True Type fonts, giving you even greater control over this area than
before. FoxPro for MS-DOS fonts can be changed using report variables.

Word-wrap bands are converted to a series of one-line text fields in FoxPro reports.
Band spacing and pitch information is not converted. FoxPro does not use a global ruler
or a word-wrap paragraph ruler, so this information is not retained. Converted reports
will have a right margin equal to the width of the report. The left margin is not
converted but is settable in the FoxPro Report Writer.

Reports with tab characters may need to have their fields rearranged to achieve the
desired appearance.

In dBASE you can print the page header in the report introduction. In FoxPro, converted
reports of this type have the title band after the page header, and the summary band
before the page footer. However, when printed, the title header will precede the page
header and the page footer will come before the summary footer.

Migrating dBASE IV applications

Empty report bands print in dBASE, so the File Converter adds null characters to these
bands so they will also print in FoxPro.

dBASE reports do not store complete environment information, only database aliases.
As a result, upon opening a converted report, you may get an error such as
"Customer.dbf not found." FoxPro reports can save database names, relations, skips, and
index information. Once in the Report Writer, set up the environment the way you want
it and then save that information with that report. No more such errors will appear.

Note that vertical stretch bands are only supported in the detail band in FoxPro. If you're
report relies on vertical stretching outside the detail band, you may wish to run the .FRG
file directly.

Migrating dBASE IV applications

Running report programs (.FRGXE ".FRG"§s)

If you're not planning to modify a report, simply running the .FRG file in FoxPro often
makes the most sense. To run an .FRG in FoxPro 2.5 for MS-DOS, use the REPORT
FORM command, for example, type REPORT FORM myreport.frg. FoxPro compiles
the .FRG into an .F4X file and runs the report. In FoxPro for Windows, use the DO
command: DO myreport.frg. The report is compiled into an .FXP file and then run.

When running the reports with a DO command, remember that the optional information
supplied in the REPORT FORM command can be passed to the .FRG program as
parameters. Label programs do not require (or accept) these parameters. The first three
parameters are logical variables, which are .T. if the equivalent REPORT FORM
command would contain the NOEJECT, PLAIN, or SUMMARY key word, respectively.
The fourth is a character string that stores an additional title line, and the fifth is a
character string not used by dBASE IV (which you can use for your own purposes within
the report or in UDFs called from the report).

For example, the following are equivalent:

REPORT FORM Namelist TO PRINT NOEJECT SUMMARY HEADING "Total
Receipts"

DO Namelist.frg WITH .T., .F., .T., "Total Receipts"

Also note that the REPORT FORM and LABEL FORM commands trigger a search
equivalent to a LOCATE for records that satisfy any FOR clause or filter condition.
Because there is a CONTINUE command in the main DO WHILE loop generated by
dBASE, you must execute a LOCATE command before running a report or label
program with a DO command.

Printer drivers

XE "Printer drivers"§If you encounter problems running dBASE report files (.FRGs),
most likely the problems will involve printer drivers. In dBASE IV, a printer driver
includes all the information needed to print on a particular printer and produce the
standard styles--boldface, italic, underlined, superscript, and subscript--as well as five
custom fonts defined in the CONFIG.DB file.

In dBASE IV, if an application requires more than five special fonts, it may define more
than one printer driver for the same printer. Many aspects of a particular report run or
report section are governed by assigning appropriate values to system memory variables,
while using the same printer driver. The name of the current printer driver is stored in the
system memory variable _PDRIVER. You can use a print form to store sets of values for
the relevant system memory variables (_PADVANCE, _PAGENO, _PBPAGE,
_PCOPIES, _PDRIVER, _PECODE, _PEJECT, _PEPAGE, _PLENGTH, _PLOFFSET,
_PPITCH, _PQUALITY, _PSCODE, _PSPACING, and _PWAIT).

In FoxPro for MS-DOS, you use a printer driver setup to store information about the
specific printer and some of the same aspects of the print job found in a dBASE IV print
form. The _PDRIVER variable stores the name of the current printer control program,
and the _PDSETUP variable stores the name of the current printer driver setup.

Migrating dBASE IV applications

References to _PDRIVER must be removed from a dBASE IV program before you can
run it in FoxPro, which will interpret the name of the dBASE IV printer driver as the
name of a new printer interface control program. In most cases, you can substitute a
command that stores an appropriate value to _PDSETUP to identify your printer and
overall print parameters.

Once you assign the right printer driver setup, FoxPro will produce the five standard
attributes. Some additional changes may be necessary to print the report exactly as it
appeared in dBASE IV.

In FoxPro for Windows, printer control is handled by Windows, and reports are routed to
the printer selected using the Print Setup option on the File menu. FoxPro for Windows
ignores all references to _PDRIVER and _PDSETUP, so commands that assign new
values to _PDRIVER will not generate errors. However, formatting changes
implemented in dBASE IV by switching printer drivers--such as choosing landscape or
portrait orientation for a report--will also be ignored.

Migrating dBASE IV applications

Like the standard attributes, the special fonts are implemented through the STYLE clause
in the ? and ?? commands that construct the report. Because FoxPro for MS-DOS ignores
any unrecognized codes in the STYLE clause, the dBASE IV fonts will not generate
errors but will not appear in the output. One way to reproduce any special fonts defined
in the dBASE IV configuration file and referenced in report or label forms is to modify
the printer driver program. However, this is much harder than adding custom code to the
report or label program. The easiest way to implement these fonts is to store the escape
sequences that initiate and terminate them (which you can find in the dBASE IV
CONFIG.DB file) in memory variables and add ??? commands to the report or label
program to send these codes to the printer before and after printing the affected data. To
find all the style codes, you can edit the .FRG or .LBG program and search for the
STYLE clause.

In FoxPro for Windows, you control the font and style of printed output by adding a
FONT clause to a ? or ?? command. FoxPro for Windows ignores all STYLE clauses
unless you also specify a font using the new FONT clause. If you only use a few simple
attributes, you might simply use a global search and replace to add the necessary FONT
clauses. You can also substitute FONT clauses to emulate the special fonts implemented
in dBASE IV with custom font codes defined in the CONFIG.DB file. Some
experimentation with fonts will be required in most cases to achieve correct pagination,
because FoxPro for Windows respects the page length in lines established through the
system memory variable _PLENGTH. However, unlike FoxPro for MS-DOS, it does
not necessarily print six lines per inch--in Windows, changing the font size affects both
the height and width of the characters. A report designed to print 66 lines per 11-inch
page will usually print more than one "page" on each physical page.

Some of the settings established in dBASE IV through system memory variables--in
particular, the print pitch (_PPITCH) and quality (_PQUALITY), also require different
printer driver setups in FoxPro. If the dBASE IV program establishes these settings once
for an entire report, you can define a FoxPro printer driver setup with the desired
combination of settings. If the settings are changed within a report program, you must
edit the program to switch printer driver setups or add ??? commands to initiate and
terminate the print modes at the appropriate times. FoxPro also ignores the system
memory variable _PWAIT, which determines whether to pause for a paper change
between pages, and you need to write a UDF, which you can call from the report header,
to accomplish the pause.

Labels
XE "Labels"§As with reports, you have the choice of running label programs (.LBGs) in
FoxPro or converting the label file (.LBLXE ".LBL"§) to FoxPro format (.LBX) using
the File Converter.

Effects of the conversion process

All fields and text are converted. Where multiple fields are placed on one line, an
expression that concatenates these fields replaces them. Note that if you use the
centering feature in dBASE, it centers the field by placing spaces to the left of the object.

Migrating dBASE IV applications

The File Converter treats this as a text string and places quotation marks around it. Also,
note that style attributes (underlining, bold, italics, superscript and subscript) are not
preserved by the File Converter and will need to be recreated in FoxPro.

Running label programs (.LBGXE ".LBG"§s)

The same considerations for running .FRGs apply to running .LBG files. In general,
these should run without problem. Importantly, programs generated by dBASE IV
version 1.5 make heavy use of the ISBLANK function to suppress blank lines that result
from empty fields. You can solve this problem by changing all the occurrences of this
function to the roughly equivalent EMPTY function.

Migrating dBASE IV applications

Addressing dBASE language compatibility issues
Overview
Of the many hundred commands and functions in dBASE IV, overwhelmingly, they
work exactly the same way in FoxPro. The degree of compatibility is extremely high,
even more so with dBASE IV 1.0 and 1.1. However, there are areas where dBASE and
FoxPro differ.

To migrate program files to FoxPro, first use the Program Analyzer to find potential
compatibility problems. See the section titled "Using the Program Analyzer." After the
Program Analyzer has created a database of potential issues, you can turn to eliminating
each in turn. After you have addressed these areas, you can then try running your
application.

Each issue the Program Analyzer finds is documented in the section titled "Alphabetical
list of potential dBASE IV issues." Each issue is described and an explanation offered on
how programs can be modified so they perform the way you expect them to in FoxPro.

A note on dBASE IV Applications GeneratorXE "Applications Generator"§
applications
Applications generated by the dBASE IV Applications Generator consist of a variety of
files that store the various application components. There is one file for each bar menu,
menu popup, files list, batch process, and so on, each of which has a unique extension
(.BAR, .POP, .FIL, .VAL, and so on). These files are required only to modify the
application in dBASE IV. They do not need to be converted.

You should erase or separate from your other files the main application object, which has
the extension .APP, otherwise FoxPro will attempt to run it instead of the .PRG file of
the same name (unless you type the .PRG extension). The .APP extension in FoxPro is
used for files similar to .DBO files in dBASE.

Applications Generator applications consist of two .PRG files: a main startup program,
which starts up the application and establishes the working environment, and a larger
program with the same name as the main menu, which contains the individual procedures
that execute the menu options. The main startup program has the same name as the main
application object defined using the Applications Generator. To run the application in
FoxPro, use a DO command to execute the startup program.

Major compatibility issues
Although the Analyzer might find many potential problems in your application, most all
can be resolved, often by changing a single line of code, so that your application will run
in FoxPro. Also, you might find that few types of changes are required, although you
might find many occurrences of the same few issues.

The only significant areas of incompatibility are security, network functions, and the
more rarely used SQL and transaction processing functions. Most SQLXE " SQL"§
programs (.PRSXE ".PRS"§ files) will need to be rewritten in FoxPro. Also, FoxPro
doesn't offer native support for security or transaction processing. If you have FoxPro

Migrating dBASE IV applications

2.5 for MS-DOS and Novell NetwareÒ 2.x or higher, you can take advantage of Novell
Transaction Tracking ServicesÒ.

In addition, many software vendors offer extensive libraries of security and network
functions, providing an even richer alternative to the set of functions supported in
dBASE. See Appendix E for a list of products and the many functions each supports.

Migrating dBASE IV applications

Ways to fix possible problems
After the Program Analyzer has identified potential issues in your programs, you can
address these issues in any of six ways:

· Substitute an equivalent FoxPro command or function

· Modify syntax

· SET COMPATIBLE DB4 ON

· Call UDFs

· Write a procedure or function

· Use a third-party solution

The Program Analyzer and this document include a list of all the known
compatibility issues. (See the section below titled "Alphabetical list of
compatibility issues.") Each issue has a description along with what changes,
if any, should be made.

Many if not most problems can be addressed by using an equivalent FoxPro command or
function. Often, user-defined functions can be created that effectively perform this
substitution for you, and many such UDFs are included in this kit. In some cases, code
needs only an additional argument or other small modification in order to work as
expected. A number of minor issues can be resolved by setting the dBASE IV
compatibility mode on.

Where quick fixes aren't readily available, it's usually just a matter of adding a procedure
or few lines of additional code. Rarely will you need to resort to third-party products,
except possibly in the cases of security and transaction processing.

SET COMPATIBLE
You can maximize compatibility by adding a SET COMPATIBLE command to your
main startup program, as follows:

SET COMPATIBLE DB4 ON

This command changes the way FoxPro executes certain commands and functions to
match the behavior of dBASE. The Program Analyzer will find all key words affected
by SET COMPATIBLE. The section titled "Alphabetical list of potential dBASE IV
issues" explains the effects SET COMPATIBLE has on a particular key word.

Setting COMPATIBLE on is a great way to get your application up and running.
Eventually, as you add FoxPro features, you might find it easier to move away from
using the compatibility feature.

Appendix A has a key word-by-key word list of the effects of SET COMPATIBLE.

Migrating dBASE IV applications

Calling user-defined functions (UDFs)

You can solve many problems that arise from different function names and dBASE IV
functions that are unsupported in FoxPro by using UDFs that duplicate the behavior of
dBASE IV functions.

For example, the dBASE IV PCOUNT function is identical to the FoxPro
PARAMETERS function. By using the following code, you could avoid errors resulting
from the use of the PCOUNT function in a dBASE IV procedure or UDF:

FUNCTION Pcount

RETURN PARAMETERS()

The Migration Kit disk includes this UDF and others in a file called FOXPROC.PRG.
These are all the dBASE functions for which the Migration Kit provides a UDF:

FDATE() ISBLANK()

FLDCOUNT() PCOUNT()

FOR() TAGCOUNT(
)

FTIME() TAGNO()

WINDOW()

By adding the command SET PROCEDURE TO FOXPROC.PRG to the beginning of
your application, all these functions will work exactly as they do in dBASE. If your
application already has a procedure file, add these UDFs to that file.

Where FoxPro has a built-in function with the same name as dBASE but that operates
slightly differently, another approach must be taken. A built-in function is always
executed even if a UDF with the same name is available.

Migrating dBASE IV applications

Non-syntax issues

Parameter passingXE "Parameter passing"§
In dBASE IV, parameters are passed by reference to both procedures and functions. In
FoxPro, parameters are passed by reference to procedures and by value to functions. To
pass parameters by reference to functions, add the command SET UDFPARMS TO
REFERENCE to your program.

Reading keystrokes
If a dBASE IV application uses the INKEY(), READKEY() XE "READKEY "§or
LASTKEY() XE "LASTKEY "§functions to check the user's last action and respond
appropriately, errors might result in FoxPro. FoxPro and dBASE have different key
assignments for a number of key combinations. INKEY(), READKEY() and
LASTKEY() are flagged by the Program Analyzer for this reason.

FoxPro reads key assignments from a macro file with the extension .FKY. Use the
dBASE.FKY macro file, included on the Migration Kit disk, so FoxPro keystrokes are
mapped to dBASE keystrokes. Then include the command RESTORE MACROS
FROM dBASE.FKY in your program. Alternately, you could change your program code
so it uses FoxPro's "native" key assignments. See the table in Appendix G for a list of
these values.

FoxPro key labels differ slightly from dBASE. See the description of the ON KEY
command in the section "Alphabetical list of potential dBASE IV issues."

Migrating dBASE IV applications

Hard-coded file extensionsXE "File extensions"§
The Program Analyzer finds the most commonly used file extensions types not used in
FoxPro. The following table shows FoxPro equivalent extensions for each type of
dBASE file that a program might use.

dBASE File FoxPro File
XE ".DBF
"§.DBF

No change needed

XE
".DBO"§.DB
O

.FXP

XE
".DBT"§.DBT

.FPT

XE
".FMO"§.FM
O

.PRX

XE ".FMT
"§.FMT

.FMT

XE ".FRG
"§.FRG

No change needed

XE ".FRM
"§.FRM

.FRX

XE ".FRO
"§.FRO

.F4X

XE ".LBG
"§.LBG

No change needed

Migrating dBASE IV applications

XE ".LBL
"§.LBL

.LBX

XE ".LBO
"§.LBO

.L4X

.MDX .CDX

XE ".NDX
"§.NDX

.IDX

XE
".PRG"§.PRG

.PRG

XE ".PRS
"§.PRS

.PRG

XE ".QBE
"§.QBE

.PRG

Alphabetical list of potential dBASE IV issues

Below is a list of the known compatibility issues in running dBASE programs in FoxPro.
Each issue describes the behavior of a function or command in dBASE and in FoxPro.
The Action section tells you what you should do to your program, and an example is
usually included. Any other relevant information is placed in the comment section.

This information is also displayed in the Program Analyzer, with the exception of
examples which are not displayed in the Program Analyzer.

For the sake of brevity and conciseness, no attempt is made to reproduce the
documentation on these commands and functions. You can consult the dBASE IV and
FoxPro documentation on specific commands and functions for further details.

Each issue is assigned one of four levels:

Migrating dBASE IV applications

· Level XE "Level "§1 commands and functions are those not supported in
FoxPro. These commands and functions must be removed or replaced with
FoxPro equivalents.

· Level 2 commands and functions will generate errors in FoxPro but often have
very close FoxPro equivalents.

· Level 3 commands and functions will not generate errors but behave differently
enough to merit attention.

· Level 4 commands and functions will not generate errors and will rarely cause a
problem in your program. Searching for Level 4 issues flags many lines of code
which will usually work fine.

Level assignments, while somewhat arbitrary, are designed to give you a sense of the
importance of an issue and the effort required to address it.

Alphabetical List of Potential dBASE IV Issues

@...GET MESSAGE
See MESSAGE.

@...GET XE "@...GET"§ REQUIRED XE "@...GET REQUIRED"§XE
"REQUIRED"§
Level: 1

dBASE IV behavior: When used with RANGE or VALID, the REQUIRED key word
forces validation whether or not data has changed, even if you skip
a field with the mouse.

FoxPro behavior: Generates an error.

Action: To require validation when data does not change but the user
moves through the field, remove the REQUIRED key word and
SET COMPATIBLE DB4 on.

To require validation in cases where the user skips a field with the
mouse, remove the REQUIRED key word. Then add a VALID
clause to the READ that calls a UDF. Place all the tests for each
GET in the UDF called by READ VALID.

Comment: The mouse can also be turned off using the SET MOUSE
command.

Example: dBASE
@ 2,2 SAY "Name:" GET custname VALID REQUIRED

my_UDF()
@ 6,2 SAY "Amount:" GET order_amt VALID REQUIRED ;
order_amt <> 0
READ

FUNCTION my_udf
IF LEN(custname) = 0

<give user error message>
RETURN .F.

ELSE
RETURN .T.

ENDIF

FoxPro
@ 2,2 SAY "Customer name:" GET custname
@ 6,2 SAY "Amount: " GET order_amt
READ VALID my_udf()

FUNCTION my_udf
ret_val=.T.
IF LEN(custname) = 0

<give user error message>

Alphabetical List of Potential dBASE IV Issues

ret_val = .F.
ENDIF
IF order_amt = 0

<give user different error message>
ret_val = .F.
ENDIF
RETURN ret_val

Alphabetical List of Potential dBASE IV Issues

@...GET XE "@...GET"§ XE "@...GET"§ OPEN WINDOW XE "OPEN
WINDOW"§
XE "@...GET OPEN WINDOW"§Level: 3

dBASE IV behavior: dBASE opens a window, displays the memo text, and places the
cursor in the predefined window when you move into the field.
You must press Ctrl+Home to begin editing.

FoxPro behavior: Same as dBASE, except FoxPro displays a memo marker behind
the predefined window and places the cursor in this memo marker.

Comment: If desired, you can change the coordinates of the window that is
opened so that it does not cover the memo marker. Alternatively,
you could use the EDIT or MODIFY MEMO commands in
FoxPro, which gives you tremendous flexibility and control.

Action: None required.

@...SAY
XE "@...SAY"§Level: Not flagged by the Program Analyzer.

dBASE IV behavior: a) Output that extends beyond the lower right corner of the screen
will be displayed, causing the screen to scroll upward.

b) With SET STATUS ON, output can overwrite the status bar.
Text that extends beyond the end of the status display wraps above
the status bar, scrolling upward from that point.

c) @SAY with the PICTURE key word rounds the rightmost digit.

FoxPro behavior: a) Output that extends beyond the end of the screen is truncated.

b) Output cannot overwrite the status bar. Text that extends
beyond the end of the screen is truncated.

c) When data is displayed using a PICTURE clause, the value is
truncated, not rounded

Action: SET COMPATIBLE DB4 ON.

Comment: With COMPATIBLE set on, @SAY in FoxPro acts like @SAY in
dBASE. These issues are mostly cosmetic so, the Program
Analyzer does not flag the @SAY command.

ACCESS()
See Security.

Alphabetical List of Potential dBASE IV Issues

ACTIVATE MENU XE "ACTIVATE MENU"§
Level: 2

dBASE IV behavior: dBASE does not allow the user to click on disabled menu pads.

FoxPro behavior: FoxPro allows the user to click on disabled menu pads. The effect
is the same as if the user had pressed the escape key.

Action: Place the ACTIVATE MENU command inside a DO...WHILE
loop.

Comment: The loop should run until the user clicks on the menu pad to exit
the application.

Example: dBASE
ACTIVATE MENU my_menu

FoxPro
DO WHILE PAD() <>"Exit" &&Use the exit
ACTIVATE MENU my_menu &&string from your
ENDDO &&application

ACTIVATE POPUP XE "ACTIVATE POPUP"§
Level: 2

dBASE IV behavior: dBASE does not allow the user to click on disabled popup bars.

FoxPro behavior: FoxPro allows the user to click on disabled popup bars. The effect
is the same as if the user had pressed the escape key.

Action: Place the ACTIVATE POPUP command inside a DO...WHILE
loop.

Example: dBASE
ACTIVATE POPUP my_popup

FoxPro
DO WHILE BAR() <> 5 &&Use the bar
ACTIVATE MENU my_menu &&number from your
END DO &&application

ACTIVATE SCREEN XE "ACTIVATE SCREEN"§ , ACTIVATE WINDOW XE
"ACTIVATE WINDOW"§
Level: Not flagged by the Program Analyzer.

dBASE IV behavior: By default, the cursor position is set to 0,0.

FoxPro behavior: The cursor position retains the value it had prior to the
ACTIVATE SCREEN or ACTIVATE WINDOW command.

Action: SET COMPATIBLE DB4 ON.

Comment: The cursor position will be set to 0,0 after issuing the ACTIVATE
SCREEN or ACTIVATE WINDOW command. This issue is
mostly cosmetic, so the Program Analyzer does not flag these

Alphabetical List of Potential dBASE IV Issues

commands.

APPEND MEMO XE "APPEND MEMO"§
Level: 3

dBASE IV behavior: The file extension .TXT is assumed if none is specified.

FoxPro behavior: If no file extension is specified, an error is generated.

Action: SET COMPATIBLE DB4 ON.

BARCOUNT() XE "BARCOUNT()"§ (version 2.0 only)
Level: 2

dBASE IV behavior: Returns the number of bars in a specified popup or in the active
popup if no popup name is given.

FoxPro behavior: Generates an error.

Action: Replace BARCOUNT() with the FoxPro function CNTBAR().

Comment: CNTBAR() in FoxPro requires that you specify the name of the
popup.

Example: dBASE
num_bars=BARCOUNT(pop_name)

FoxPro
num_bars=CNTBAR(pop_name)

BARPROMPT() XE "BARPROMPT()"§ (version 2.0 only)
Level: 2

dBASE IV behavior: Returns the prompt text of the specified bar in a specified popup,
or in the current popup if none is given.

FoxPro behavior: Generates an error.

Action: Replace BARPROMPT() with the FoxPro function PRMBAR().

Comment: PRMBAR() in FoxPro requires that you specify the name of the
popup.

Example: dBASE
prmpt_txt=BARPROMPT(1)

FoxPro
prmpt_txt=PRMBAR(pop_name,1)

BEGIN TRANSACTION
See Transaction processing.

Alphabetical List of Potential dBASE IV Issues

BLANK (version 1.5 only)
XE "BLANK (version 1.5 only)"§Level: 2

dBASE IV behavior: Used to place spaces ("nulls") in all or selected fields in one or
more records.

FoxPro behavior: Generates an error.

Action: Remove the BLANK command. Use the SCATTER MEMVAR
BLANK and the GATHER MEMVAR command to "blank" a
record. For individual fields, use the REPLACE command.

Comment: FoxPro does not have full support for null values. Null values are
fields filled with spaces and FoxPro can do this with date and
character fields, though not numeric or logical fields. For null
support in numeric fields, create a logical field that keeps track of
whether the numeric field contains a value or is null.

Example: FoxPro

For dates:

REPLACE inv_date WITH { / / }

For character fields:

REPLACE cust_name WITH SPACE(LEN(cust_name))

For records (this blanks the current record; numeric fields are
set to zero):

SCATTER MEMVAR BLANK
GATHER MEMVAR

BROWSE
XE "BROWSE"§Level: Not flagged by the Program Analyzer.

dBASE IV behavior: Data are committed when the user exits a row.

FoxPro behavior: Data are committed when the user exits a field.

Action: None required.

BROWSE XE "BROWSE"§ COMPRESS XE "COMPRESS"§
XE "BROWSE COMPRESS"§Level: 3

dBASE IV behavior: The COMPRESS key word compresses the header region to one
line.

FoxPro behavior: Not supported. The COMPRESS key word is ignored.

Action: None required.

Comment: COMPRESS in dBASE permits up to 19 rows to fit on one screen
instead of 17. FoxPro 2.5 for Windows supports scalable fonts.
Using a smaller point size will decrease row height and increase

Alphabetical List of Potential dBASE IV Issues

the number of records visible on one screen. In the example, the
number of records visible goes from 25 (default font and type size)
to 31 (Times New Roman, 6 pt.).

Example: dBASE
BROWSE COMPRESS

FoxPro
BROWSE FONT 'Times New Roman', 6

Alphabetical List of Potential dBASE IV Issues

BROWSE XE "BROWSE"§ NOFOLLOW XE "NOFOLLOW"§
XE "BROWSE NOFOLLOW "§Level: 3

dBASE IV behavior: The NOFOLLOW key word prevents the record pointer from
following a record to its new position in the index after you edit
the key fields.

FoxPro behavior: The NOFOLLOW key word is ignored. In FoxPro BROWSE
always behaves as if NOFOLLOW has been specified. Neither the
changed record nor the record pointer are moved after a change to
a key field.

Action: None required.

Comment: In cases where you want to simulate a dBASE BROWSE without
NOFOLLOW, you can use the SHOW WINDOW <window
name> REFRESH command. This will "move" the updated
record. The record pointer can be moved in the same routine.

BROWSE XE "BROWSE "§ NOINIT XE "NOINIT"§
XE "BROWSE NOINIT "§Level: 3

dBASE IV behavior: Redisplays the previous BROWSE window configuration.

FoxPro behavior: Not supported. The NOINIT key word is ignored.

Action: None required. Specifying the LAST key word is identical to
using NOINIT.

Example: dBASE
BROWSE NOINIT

FoxPro
BROWSE LAST

BROWSE XE "BROWSE"§ NOMENU XE "NOMENU"§
XE "BROWSE NOMENU "§Level: 3

dBASE IV behavior: The NOMENU option suppresses the menu bar entirely.

FoxPro behavior: The NOMENU option suppresses only the Browse pad in the
menu bar.

Action: To suppress the menus entirely, use the SET SYSMENU OFF
command prior to the BROWSE command, and SET SYSMENU
ON or SET SYSMENU AUTOMATIC afterward.

Example: dBASE
BROWSE NOMENU

FoxPro
SET SYSMENU OFF
BROWSE
SET SYSMENU ON

Alphabetical List of Potential dBASE IV Issues

Alphabetical List of Potential dBASE IV Issues

BROWSE XE "BROWSE"§ NOORGANIZE XE "NOORGANIZE"§ XE
"BROWSE NOORGANIZE "§
Level: 2

dBASE IV behavior: The NOORGANIZE key word (version 1.5 only) suppresses the
Organize menu pad in the menu bar.

FoxPro behavior: Generates an error.

Action: Remove this key word.

Comment: FoxPro does not have a menu pad called Organize. Commands
similar to those on the Organize menu are found under the
Database and Browse pads in FoxPro. The FoxPro menus are
easily customizable. Individual menu items as well as entire pads
can be disabled or removed. Refer to the section on menus in the
User's Guide (included the FoxPro 2.5 documentation).

CALL XE "CALL"§
Level: 1

dBASE IV behavior: CALL accepts an expression list.

FoxPro behavior: CALL accepts only one expression.

Action: Redesign binary routines into several routines and break the single
dBASE CALL into several FoxPro CALL commands.

CALL()
XE "CALL()"§Level: 1

dBASE IV behavior: This function provides an alternative to the CALL command for
calling binary programs loaded into memory with the LOAD
command.

FoxPro behavior: Generates an error.

Action: Substitute the CALL command and (if necessary) modify the
called routine.

Comment: The CALL command in FoxPro works the same as in dBASE IV.
You might have to change the number of parameters or modify the
binary routine to take into account the fact that the routine can
supply a return value to the CALL function. When you use the
CALL command, the binary routine must return values by
changing the values of the memory variables passed as parameters.

CATALOG() XE "CATALOG()"§
Level: 2

dBASE IV behavior: Returns the name of the active catalog file.

FoxPro behavior: Generates an error.

Alphabetical List of Potential dBASE IV Issues

Action: Remove this function.

CERROR()
XE "CALL()"§Level: 2

dBASE IV behavior: Undocumented function that returns the number of the last
compiler error.

FoxPro behavior: Generates an error.

Action: Remove this function.

CHANGE()
See Network functions.

Comparison operators
XE "Comparison operators"§Level: 2

dBASE IV behavior: The >=XE " >="§ (greater than or equal to) and <=XE "<="§ (less
than or equal to) operators can also be written as => and =<.

FoxPro behavior: Placing the equal sign before a less than character or greater than
character (for example, =>XE " =>"§ or =<XE "=<"§) yields the
"Missing operand" error message.

Action: Replace occurrences of => with >= and =< with <=.

COMPLETED()
See Transaction processing.

CONVERT
See Network functions.

COPY TO ARRAY
XE "Comparison operators"§Level: 4

dBASE IV behavior: In the FIELDS clause, the same field can be included more than
once.

FoxPro behavior: Including a field more than once in the FIELDS clause generates
an error.

Action: Remove multiple references to a single field.

CTOD()
XE "CTOD()"§Level: 3

dBASE IV behavior: If the input to the CTOD function is a character string in which the
month is greater than 12 or the day is greater than the number of
days in the specified month, dBASE IV carries out a date addition
and returns the resulting legitimate date. For example,
CTOD("13/32/93") yields the date 02/01/94.

Alphabetical List of Potential dBASE IV Issues

FoxPro behavior: FoxPro accepts only legitimate dates as arguments. CTOD returns
an empty date, which is displayed as " / / " if the input is not a
legitimate date.

Action: None required.

Comment: You may wish to check the value return by CTOD() using the
EMPTY function to make sure a legitimate date was entered.

DEFINE BAR
See MESSAGE.

Alphabetical List of Potential dBASE IV Issues

DEFINE MENU
XE "DEFINE MENU"§Level: 4

dBASE IV behavior: DEFINE MENU in dBASE IV version 1.0 adds an extra space to
each pad (and to the highlight bar that indicates the selected pad).
DEFINE PAD without coordinates places one space between pads,
resulting in up to three spaces between pads on the screen. dBASE
IV versions 1.1 and 1.5 do not add leading and trailing spaces but
do add one space between pads.

MESSAGE expressions are output to the active window (see
MESSAGE).

FoxPro behavior: Same as dBASE IV 1.0. An extra space is added to each pad.

MESSAGE expressions are output to the desktop (see
MESSAGE).

Action: Optionally add the NOMARGIN key word to the DEFINE MENU
command to suppress the extra spaces and match the appearance of
the menu in dBASE IV 1.1 or 1.5.

Comment: Pads on bar menus written in dBASE IV version 1.1 or 1.5 might
not all fit on one line with the extra spaces.

Example: dBASE (1.1 or 1.5 only)
DEFINE MENU Main

FoxPro
DEFINE MENU Main NOMARGIN

DEFINE PAD
See MESSAGE.

DEFINE POPUP
See MESSAGE.

DESCENDING ()XE "DESCENDING()"§ (version 1.5 only)
Level: 1

dBASE IV behavior: The DESCENDING function evaluates to .T. if an index accesses
records in descending order, or .F. otherwise.

FoxPro behavior: Generates an error.

Action: The DESCENDING function must be removed.

DISPLAY USERS
See LIST USERS

END TRANSACTION
See Transaction processing.

Alphabetical List of Potential dBASE IV Issues

Alphabetical List of Potential dBASE IV Issues

ERROR()
XE "ERROR()"§Level: 3

dBASE IV behavior: ERROR() returns the number corresponding to the error message
trapped by the ON ERROR command.

FoxPro behavior: Behaves like dBASE, but often returns error numbers different
from dBASE error numbers.

Action: Use the appropriate FoxPro error number. Check Appendix D to
see which dBASE error messages correspond to which FoxPro
error numbers. Refer to the FoxPro Developer's Guide for a list of
all FoxPro error messages.

Comment: You might be able to remove parts of your error handling code
because some dBASE errors will never be generated in FoxPro.
For example, FoxPro does not use error 76 (" -: Concatenated
string too large") or 77 because FoxPro supports character strings
of up to 65K characters.

Note that many error numbers used for the same error in FoxPro
and dBASE have different error messages. Thus, an error-trapping
routine that tests the MESSAGE function rather than the ERROR
function may might to respond to many common errors. See
Appendixes C and D.

FCREATE() XE "FCREATE()"§ and FOPEN() XE "FOPEN()"§
Level: 2

dBASE IV behavior: The second input to the FOPEN and FCREATE functions, which
represents the file attributes, must be "R" (read-only), "W" (write-
only), "A" (append-only), "RW" or "WR (read and write), or "RA"
or "AR" (read and append).

FoxPro behavior: The second input to the FOPEN and FCREATE functions is a
numeric code that represents the file attributes and also allows you
to specify buffered or unbuffered access.

Action: Replace dBASE file attributes with FoxPro attribute number.

Example: dBASE
file_handle = FCREATE("example.txt", "R")

FoxPro
file_handle = FCREATE("example.txt", "1")

MS-DOS Attribute(s) FoxPro
Attribute
Number

dBASE
Attribute
Code

Read/write (default) 0 RW or WR

Alphabetical List of Potential dBASE IV Issues

Append only 0* A

Read and append 0* RA or AR

Read only 1 R

Hidden 2 (not
available)

Read Only/Hidden 3 (not
available)

System 4 (not
available)

Read Only/System 5 (not
available)

System/Hidden 6 (not
available)

Read
Only/Hidden/System

7 (not
available)

*There is no direct equivalent in FoxPro to append. Both read and write modes are
enabled.

FDATE() XE "FDATE()"§ (version 1.5 only)

Level: 2

dBASE IV behavior: The FDATE function returns the date stamp on the disk file
specified as input.

FoxPro behavior: Generates an error.

Action: Replace with the ADIR function, or use UDF in FOXPROC.PRG.

Alphabetical List of Potential dBASE IV Issues

Comment: One function in FoxPro, ADIR(), returns file date, as well as size,
time and attributes. A file or file skeleton can be passed as
arguments. The return data is automatically placed into an
appropriately sized array. The third column stores file date
information.

A UDF called FDATE() in FOXPROC.UDF allows you to leave
instances of the dBASE function FDATE() unchanged if you wish.
See the section titled "Calling user-defined functions" above.

Example: dBASE
file_date = FDATE('customer.dbf')

FoxPro
temp = ADIR(dir_array,'c:\foxprow\employee.dbf')
file_date = dir_array(3)

FGETS()
XE "FGETS()"§Level: 2

dBASE IV behavior: You can specify the end-of-line character in the third argument of
the FGETS and FPUTS functions (which is by default, a carriage
return and linefeed).

FoxPro behavior: FGETS and FPUTS functions process only text files that use a
carriage return and line feed as line-end characters.

Action: If a file contains line-end characters other than a carriage return
(ASCII 13) or line feed (ASCII 10), perform a global search and
replace on the file.

Alternatively, replace FGETS with an FREAD loop that reads and
tests each character until it finds the end-of-line character.

FLDCOUNT() XE "FLDCOUNT()"§ (version 1.5 only)
Level: 2

dBASE IV behavior: This function returns the number of fields in a database.

FoxPro behavior: Generates an error.

Action: Replace with the equivalent FoxPro function FCOUNT. Or use
UDF in FOXPROC.PRG.

Comment: FCOUNT works exactly like FLDCOUNT.

A UDF called FLDCOUNT() in FOXPROC.UDF allows you to
leave instances of the dBASE function FLDCOUNT() unchanged
if you wish. See the section titled "Calling user-defined
functions" above.

Example: dBASE
FLDCOUNT('customer.dbf')

Alphabetical List of Potential dBASE IV Issues

FoxPro
FCOUNT('customer.dbf')

FLDLIST() XE "FLDLIST()"§ (version 2.0 only)
Level: 1

dBASE IV behavior: Returns the fields of a SET FIELDS TO list, or an individual field
if the optional numeric argument is included.

FoxPro behavior: Generates an error.

Action: Replace FLDLIST() with SET("FIELDS", 1).

Comment: See SET FIELDS for more information on the behavior of a field
list when the SET FIELDS list spans more than one work area.

FOPEN()

See FCREATE()

FOR() XE "FOR()"§ (version 1.5 only)

Level: 2

dBASE IV behavior: The FOR function returns the FOR clause used to create a
conditional index tag.

FoxPro behavior: Generates an error.

Action: Replace with the equivalent FoxPro function SYS(2021) or use
UDF in FOXPROC.PRG.

Comment: A UDF called FOR() in FOXPROC.UDF allows you to leave
instances of the dBASE function FOR() unchanged if you wish.
See the section titled "Calling user-defined functions" above.

Example: dBASE
for_clause = FOR('cust_no.mdx',1)

FoxPro
for_clause = SYS(2021, 1)

FPUTS()
XE "FPUTS()"§Level: 2

dBASE IV behavior: You can specify the end-of-line character in the third argument of
the FPUTS and FGETS functions (which is, by default, a carriage
return and linefeed).

FoxPro behavior: FPUTS and FGETS functions process only text files that use a
carriage return and linefeed as line-end characters.

Action: If a file contains line-end characters other than a carriage return
(ASCII 13) or linefeed (ASCII 10), perform a global search and
replace on the file.

Alphabetical List of Potential dBASE IV Issues

Alternatively, to write a file with nonstandard end-of-line
characters, use FWRITE to write the string that contains the line of
text plus the end of line characters.

Alphabetical List of Potential dBASE IV Issues

FSIZE()
XE "FSIZE() "§Level: 2

dBASE IV behavior: The FSIZE function returns the size of the file specified as input.

FoxPro behavior: The FSIZE function returns the size of the field specified as input.

Action: Replace with the ADIR function.

Comment: One function in FoxPro, ADIR(), returns file size, as well as date,
time and attributes. A file or file skeleton can be passed as
arguments. The return data is automatically placed into an
appropriately sized array. The second column stores file size
information.

Example: dBASE
file_size = FSIZE(customer.dbf)

FoxPro
temp = ADIR(dir_array,'c:\foxprow\employee.dbf')
file_size = dir_array(2)

FTIME() XE "FTIME() "§ (version 1.5 only)
Level: 2

dBASE IV behavior: The FTIME function returns the time stamp on the disk file
specified as input.

FoxPro behavior: Generates an error.

Action: Replace with the ADIR function, or use UDF in FOXPROC.PRG.

Comment: One function in FoxPro, ADIR(), returns file time, as well as date,
size and attributes. A file or file skeleton can be passed as
arguments. The return data is automatically placed into an
appropriately sized array. The fourth column stores file time
information.

A UDF called FTIME() in FOXPROC.UDF allows you to leave
instances of the dBASE function FTIME() unchanged if you wish.
See the section titled "Calling user-defined functions" above.

Example: dBASE
file_time = FTIME('customer.dbf')

FoxPro
temp = ADIR(dir_array,'c:\foxprow\employee.dbf')
file_time = dir_array(4)

HOME() XE "HOME()"§
Level: 2

dBASE behavior: Returns home directory of dBASE IV.

FoxPro behavior: Generates and error.

Alphabetical List of Potential dBASE IV Issues

Action: Replace with the equivalent function SYS(2004)

Alphabetical List of Potential dBASE IV Issues

ID() XE "ID()"§
Level: 1

dBASE behavior: Returns name of current user on a multiuser system.

FoxPro behavior: Generates an error.

Action: Substitute a test based on the SYS(0) function.

Comment: SYS(0) returns the network computer name and number when
FoxPro is running on a network. A machine number and name
must first be assigned by the network software and the network
shell must be loaded. On Novell networks, add the following to
the system login script:

MACHINE="%USER_ID,%P_STATION,%LOGIN_NAME"

If FoxPro is not running on a network or a machine number and
name haven't been assigned by the network, SYS(0) returns a
string of spaces (10 in FoxPro for MS-DOS or 15 in FoxPro for
Windows), followed by a pound sign (#), space, and 0. When the
single-user version of FoxPro is running, SYS(0) evaluates to 1.

INKEY() XE "INKEY()"§ , LASTKEY() XE "LASTKEY()"§ , READKEY() XE
"READKEY()"§
Level: 3

dBASE behavior: FoxPro and dBASE, in many cases, map keys to different values.

FoxPro behavior: These functions work the same way as in dBASE, but FoxPro key
values may differ, so unmodified dBASE programs may not
behave the same way in FoxPro as they did before.

Action: FoxPro reads key assignments from a macro file with the
extension .FKY. Use the dBASE.FKY macro file, included on the
Migration Kit disk, so FoxPro keystrokes are mapped to dBASE
keystrokes. Then include the command RESTORE MACROS
FROM dBASE.FKY in your program.

Alternately, you could change your program code so it uses
FoxPro's "native" key assignments. See the table in Appendix G
for a list of these values.

Alphabetical List of Potential dBASE IV Issues

ISBLANK()
XE "ISBLANK()"§Level: 2

dBASE IV behavior: The ISBLANK function returns the null status of any variable.

FoxPro behavior: Generates an error.

Action: Replace ISBLANK with the FoxPro EMPTY function or use UDF
in FOXPROC.PRG

Comment: ISBLANK in dBASE and EMPTY in FoxPro are the same when
dealing with date and character fields. With numeric fields,
EMPTY returns .T. when the field has no value (is null) or when
the value is 0. ISBLANK in dBASE would return .T., meaning
the value is null.

For null support in numeric fields, create a logical field that keeps
track of whether the numeric field contains a value or is null.

A UDF called ISBLANK() in FOXPROC.UDF allows you to
leave instances of the dBASE function ISBLANK() unchanged if
you wish. See the section titled "Calling user-defined functions"
above.

Example: dBASE
null_state = ISBLANK(inv_date)

FoxPro
null_state = EMPTY(inv_date)

ISMARKED()
See Transaction processing.

ISMOUSE() XE "ISMOUSE()"§ (version 2.0 only)
Level: 2

dBASE IV behavior: Returns True (.T.) if a mouse driver is installed.

FoxPro behavior: Generates an error.

Action: Remove the function.

Comment: There is no equivalent in FoxPro.

KEYBOARD XE "KEYBOARD"§ CLEAR XE "CLEAR"§
XE "KEYBOARD CLEAR "§Level: 2

dBASE IV behavior: The CLEAR key word clears the keyboard buffer before executing
the KEYBOARD command.

FoxPro behavior: Generates an error.

Action: Remove CLEAR and place the CLEAR TYPEAHEAD command
before the KEYBOARD command.

Alphabetical List of Potential dBASE IV Issues

Example: dBASE
KEYBOARD cust_name + address + city + state CLEAR

FoxPro
CLEAR TYPEAHEAD
KEYBOARD cust_name + address + city + state

Alphabetical List of Potential dBASE IV Issues

KEYMATCH() XE "KEYMATCH()"§ (version 2.0 only)
Level: 2

dBASE IV behavior: Searches a specified index tag for a given key without changing
the active index or moving the record pointer.

FoxPro behavior: Generates an error.

Action: Remove the function.

Comment: There is no equivalent in FoxPro.

LIKE()
XE "LIKE()"§Level: 3

dBASE IV behavior: Trailing blanks in both the pattern and target are trimmed before
the comparison is made.

FoxPro behavior: The pattern and target are both used as is and trailing blanks are
significant.

Action: Use the RTRIM function or SET COMPATIBLE DB4 on.

Example: dBASE
LIKE(var1,var2)

FoxPro
LIKE(RTRIM(var1),var2)

LIST USERS XE "LIST USERS"§
Level: 2

dBASE behavior: Identifies the workstations currently logged into a dBASE
networking environment.

FoxPro behavior: Not supported. LIST USERS is ignored.

Action: None required.

Comment: See Appendix E for alternatives.

LKSYS
See Network functions.

LOCK() XE "LOCK()"§ , RLOCK() XE "RLOCK()"§
Level: 2

dBASE IV behavior: By default, you can lock more than one record at a time with these
functions.

FoxPro behavior: By default, FoxPro allows locking one record at a time.

Action: To permit multiple locks, use the SET MULTILOCKS ON
command. Add this command to the main startup program for
network applications.

Alphabetical List of Potential dBASE IV Issues

Comment: With SET MULTILOCKS ON, the ability to place multiple record
locks is the same in both FoxPro and dBASE IV.

Example: FoxPro
SET MULTILOCKS ON

Alphabetical List of Potential dBASE IV Issues

MEMORY() XE "MEMORY()"§ (version 2.0 only)
Level: 2

dBASE IV behavior: Allows you to include a parameter of from 0 to 7. Each value
represents a region of memory that MEMORY() will return.

FoxPro behavior: Generates an error if you include a parameter.

Action: Replace the MEMORY() command with the corresponding
FoxPro commands as shown in the table below.

dBASE FoxPro equivalent

MEMORY(0) SYS(1001)+SYS(1016)

MEMORY(1) No equivalent

MEMORY(2) SYS(12)

MEMORY(3) SYS(1001)

MEMORY(4) SYS(23)

MEMORY(5) SYS(23)

MEMORY(6) SYS(1016)

MEMORY(7) No equivalent

Alphabetical List of Potential dBASE IV Issues

MESSAGE XE "MESSAGE"§XE "@...GET MESSAGE"§ (@GET, DEFINE
BAR XE "DEFINE BAR"§ , DEFINE MENU XE "DEFINE MENU"§ DEFINE
PAD XE "DEFINE PAD"§ , DEFINE POPUP XE "DEFINE POPUP"§)
Level: 2

dBASE IV behavior: MESSAGE expressions are output to the active window.

FoxPro behavior: MESSAGE expressions are output to the desktop.

Action: There are three ways to resolve this issue:

a) Use the SET MESSAGE WINDOW command to output the
message expression to the window of your choice.

b) Shorten windows by one line so the message on the desktop
becomes visible.

c) Use the desktop instead of a window (using the SAVE SCREEN
and RESTORE SCREEN commands to simulate use of windows).

Comment: This problem only occurs if a window is defined that covers the
last line of the screen where the message is output.

Alphabetical List of Potential dBASE IV Issues

NETWORK()
XE "NETWORK()"§Level: 2

dBASE IV behavior: This function returns .T. only if dBASE is currently running on a
network.

FoxPro behavior: In FoxPro 2.5, NETWORK always returns .T.. In FoxPro 2.0, the
single-user version will evaluate network to .F. while the multiuser
version will return .T..

Action: Substitute a test based on the SYS(0) function.

Comment: SYS(0) returns the network computer name and number when
FoxPro is running on a network. A machine number and name
must first be assigned by the network software and the network
shell must be loaded. On Novell networks, add the following to
the system login script:

MACHINE="%USER_ID,%P_STATION,%LOGIN_NAME"

If FoxPro is not running on a network or a machine number and
name haven't been assigned by the network, SYS(0) returns a
string of 15 spaces, followed by a pound sign (#), space, and zero.
When the single-user version of FoxPro is running, SYS(0)
evaluates to 1.

Example: dBASE
on_network = NETWORK()

FoxPro
on_network = LEFT(SYS(0),10)<>SPACE(10)

Network functions
XE "Network functions"§Level: 1

dBASE IV behavior: dBASE IV supports a mechanism for detecting modifications to
the current record on a network, using the CONVERT, CHANGE,
LKSYS, and USER commands and functions.

FoxPro behavior: FoxPro ignores the CONVERT command. The CHANGE,
LKSYS, and USER functions generate errors.

Action: Remove the CHANGE, LKSYS, and USER functions. Lock
detection schemes that depend on these functions need to be
written using other methods in FoxPro.

ON BAR XE "ON BAR"§ (version 2.0 only)
Level: 2

dBASE IV behavior: Executes a command when a specified popup bar is highlighted.

FoxPro behavior: Allows execution of an ACTIVATE POPUP or ACTIVATE
MENU statement when a specified popup bar is selected.

Alphabetical List of Potential dBASE IV Issues

Action: If it is necessary to perform an action other than ACTIVATE
POPUP or ACTIVATE MENU, replace ON BAR with ON
SELECTION BAR in FoxPro.

Alphabetical List of Potential dBASE IV Issues

ON EXIT BAR XE "ON EXIT BAR"§ (version 2.0 only)
Level: 2
dBASE IV behavior: Executes a command when the cursor (highlight) leaves a

specified bar.

FoxPro behavior: Generates an error.

Action: Remove the command.

Comment: There is no equivalent in FoxPro.

ON EXIT MENU XE "ON EXIT MENU"§ (version 2.0 only)
Level: 2

dBASE IV behavior: Executes a command when the cursor (highlight) leaves a
specified menu.

FoxPro behavior: Generates an error.

Action: Remove the command.

Comment: There is no equivalent in FoxPro.

ON EXIT PAD
Level: 2

dBASE IV behavior: Executes a command when the cursor (highlight) leaves a
specified bar.

FoxPro behavior: Generates an error.

Action: Remove the command.

Comment: There is no equivalent in FoxPro.

ON EXIT POPUP XE "ON EXIT POPUP"§ (version 2.0 only)
Level: 2

dBASE IV behavior: Executes a command when the cursor (highlight) leaves a
specified popup.

FoxPro behavior: Generates an error.

Action: Remove the command.

Comment: There is no equivalent in FoxPro.

Alphabetical List of Potential dBASE IV Issues

ON KEY LABEL XE "ON KEY LABEL"§
Level: 3

dBASE IV behavior: Uses "-" character in multi-key labels.

FoxPro behavior: Uses "+" character in mulit-key labels.

Action: Replace any "-" (dash) characters in key labels and replace them
with "+" (plus sign) characters.

Comment: dBASE and FoxPro key labels are the same except for the
concatenating character in combination keystrokes.

Example: dBASE
ON KEY LABEL ALT-A DO myprog.prg

FoxPro
ON KEY LABEL ALT+A DO myprog.prg && change "-" to "+"

ON MENU XE "ON MENU"§ (version 2.0 only)
Level: 2

dBASE IV behavior: Executes a command when any popup bar without an ON PAD
handler is highlighted.

FoxPro behavior: Generates an error.

Action: Replace ON MENU with ON SELECTION MENU in FoxPro.

Comment: ON SELECTION MENU in FoxPro is functionally identical to
ON MENU in dBASE IV except that ON SELECTION MENU
executes the specified command when a bar is selected whereas
ON MENU in dBASE IV executes the specified command when a
bar is highlighted.

Example: dBASE
ON MENU File DO my_prog

FoxPro
ON SELECTION MENU File DO my_prog

ON MOUSE XE "ON MOUSE"§ (version 2.0 only)
Level: 2

dBASE IV behavior: Executes a given command when the left mouse button is clicked.

FoxPro behavior: Generates an error.

Action: Replace ON MOUSE with ON KEY LABEL LEFTMOUSE.

Comment: ON MOUSE is most typically used in dBASE IV to create user-
friendly controls such as check boxes and radio buttons. Although
the dBASE IV approach will work in FoxPro, you might consider
substituting the code that supports these controls with FoxPro
@..GET push buttons, radio buttons, check boxes, lists, etc.

Alphabetical List of Potential dBASE IV Issues

Example: dBASE
ON MOUSE DO mouse_proc

FoxPro
ON KEY LABEL LEFTMOUSE DO mouse_proc

Alphabetical List of Potential dBASE IV Issues

ON PAD XE "ON PAD"§ (version 2.0 only)
Level: 2

dBASE IV behavior: Executes any command when a specified menu pad is highlighted.

FoxPro behavior: Allows execution of an ACTIVATE POPUP or ACTIVATE
MENU statement when a specified menu pad is highlighted.

Action: If it is necessary to perform an action other than ACTIVATE
POPUP or ACTIVATE MENU, replace ON PAD with ON
SELECTION PAD in FoxPro.

Comment: ON SELECTION PAD in FoxPro is functionally identical to ON
PAD in dBASE IV except that ON SELECTION PAD executes
the specified command when a pad is selected whereas ON PAD in
dBASE IV executes the specified command when a pad is
highlighted.

Example: dBASE
ON PAD bachelor OF type DO bach_pad

FoxPro
ON SELECTION PAD bachelor OF type DO bach_pad

ON POPUP XE "ON POPUP"§ (version 2.0 only)
Level: 2

dBASE IV behavior: Executes a command when any popup bar without an ON BAR
handler is highlighted.

FoxPro behavior: Generates an error.

Action: Replace ON POPUP with ON SELECTION POPUP in FoxPro.

Comment: ON SELECTION POPUP in FoxPro is functionally identical to
ON POPUP in dBASE IV except that ON SELECTION POPUP
executes the specified command when a bar is selected whereas
ON POPUP in dBASE IV executes the specified command when a
bar is highlighted.

Example: dBASE
ON POPUP just DO it

FoxPro
ON SELECTION POPUP just DO it

Alphabetical List of Potential dBASE IV Issues

ON SELECTION POPUP
XE "ON SELECTION POPUP"§Level: 3

dBASE IV behavior: Any data displayed or windows activated by the ON SELECTION
POPUP command may cover the popup. After this command or
procedure terminates, the popup will reappear on the screen.

FoxPro behavior: A popup remains on top of windows or data displayed when
FoxPro executes the procedure named in the ON SELECTION
POPUP command.

Action: None required.

Comment: If desired, add a HIDE POPUP command to the procedure called
by ON SELECTION POPUP. The popup reappears automatically
when the command or procedure terminates and the popup regains
control.

Setting COMPATIBLE on will also result in the same behavior as
dBASE.

Example: dBASE
ON SELECTION POPUP edit_pop DO edit_proc

PROCEDURE edit_proc
<procedure code>

FoxPro
ON SELECTION POPUP edit_pop DO edit_proc

PROCEDURE edit_proc
HIDE POPUP edit_pop
<procedure code>
SHOW POPUP edit_pop

ON SELECTION POPUP BLANK
XE "ON SELECTION POPUP BLANK"§Level: 2

dBASE IV behavior: The optional BLANK key word clears the pop-up menu from the
screen before executing any commands. The pop-up menu will be
redrawn upon return from the executed command.

FoxPro behavior: Generates an error.

Action: Remove the BLANK key word.

Comment: See ON SELECTION POPUP.

PADPROMPT() XE "PADPROMPT()"§ (version 2.0 only)
Level: 2

dBASE IV behavior: Returns the prompt text of the specified pad in a specified menu,
or in the current menu if none is given.

Alphabetical List of Potential dBASE IV Issues

FoxPro behavior: Generates an error.

Action: Replace PADPROMPT() with PRMPAD().

Comment: PRMPAD() in FoxPro requires that you specify the name of the
menu.

Example: dBASE
pr_txt=PADPROMPT("File")

FoxPro
pr_txt=PRMAD("menu_1","File")

PCOUNT() XE "PCOUNT()"§ (version 1.5 only)
Level: 2

dBASE IV behavior: The PCOUNT function evaluates to the number of parameters
passed to a user-defined function.

FoxPro behavior: Generates an error.

Action: Replace PCOUNT with the PARAMETERS function or use UDF
in FOXPROC.PRG.

Comment: A UDF called PCOUNT() in FOXPROC.UDF allows you to leave
instances of the dBASE function PCOUNT() unchanged if you
wish. See the section titled "Calling user-defined functions"
above.

Example: dBASE
param_no = PCOUNT()

FoxPro
param_no = PARAMETERS()

PROTECT
See Security

REPLACE FROM ARRAY
XE "REPLACE FROM ARRAY"§Level: 2

dBASE IV behavior: Replaces the contents of one or more records with the
corresponding fields in a two-dimensional array.

FoxPro behavior: Generates an error.

Action: Replace with the commands SCATTER and GATHER.

Comment: The SCATTER command creates memory variables from fields.
GATHER writes those memory variables back to the database.
These commands are faster than COPY TO and REPLACE
FROM, plus, the variables created are named based on the field
names, rather than becoming a numbered element in an array.

If this command is used to replace multiple records, create a loop
using the GATHER command.

Alphabetical List of Potential dBASE IV Issues

Example: dBASE
COPY TO ARRAY rec_array
<<@ SAYs and GETS>>
READ
REPLACE FROM ARRAY rec_array

FoxPro
SCATTER MEMVAR
<<@ SAYs and GETS>>
READ
GATHER MEMVAR

RESET
See Transaction processing.

Alphabetical List of Potential dBASE IV Issues

RESTORE FROM XE "RESTORE FROM"§
Level: 3

dBASE IV behavior: A .MEM extension is assumed if none is supplied.

FoxPro behavior: If no extension is specified, FoxPro will search for the filename
without an extension.

Action: Add an explicit extension.

RESTORE SCREEN XE "RESTORE SCREEN"§
Level: 2

dBASE IV behavior: The SAVE SCREEN command saves a screen image in memory
but not in a memory variable. RESTORE SCREEN can be
executed from anywhere in the application to restore the screen
image.

FoxPro behavior: The SAVE SCREEN command stores the screen image to a
memory variable. The memory variable must be available in the
procedure or function where the RESTORE SCREEN command is
issued.

Action: If SAVE SCREEN and RESTORE screen are in the same
procedure or function, no change is necessary. If not, declare the
FoxPro memory variable public before executing the SAVE
SCREEN command.

Comment: If the screen is saved to a private variable, RESTORE SCREEN
will generate a "Variable not found" error message if issued from a
procedure or function different from where SAVE SCREEN was
issued.

Example: dBASE
SAVE_SCREEN TO screen_var

FoxPro
PUBLIC screen_var
SAVE SCREEN to screen_var

RLOCK()
See LOCK()

ROLLBACK
See Transaction processing.

ROLLBACK ()
See Transaction processing.

RUN() XE "RUN()"§
Level: 2

Alphabetical List of Potential dBASE IV Issues

dBASE behavior: Runs an external program.

FoxPro behavior: Generates an error.

Action: Substitute the RUN command.

Alphabetical List of Potential dBASE IV Issues

Security
XE "Security"§Level: 1

dBASE IV behavior: Security in dBASE IV is implemented with the PROTECTXE
"PROTECT"§, ACCESSXE "ACCESS"§, USERXE "USER"§,
SET ENCRYPTIONXE "SET ENCRYPTION"§, and
SET("ENCRYPTION")XE "SET(\"ENCRYPTION\")"§
commands and functions.

FoxPro behavior: FoxPro ignores the SET ENCRYPTION command. The ACCESS
function always returns 0. The USER function and PROTECT
command generate an errors.

Action: Remove the USER function. Copy any encrypted databases to
unencrypted files in dBASE before you begin using FoxPro.

Comment: If the application requires a detailed security system or file
encryption, you can design your own or you can use third-party
products.

SELECT()
XE "SELECT()"§Level: 2

dBASE IV behavior: In version 1.1, this function takes no inputs and returns the highest
numbered available work area.

In version 1.5, when evaluated with no inputs, it returns the lowest
numbered available work area. With an alias specified as input, it
returns the number of the work area in which a database with the
specified alias is open.

Also, if the current work area is changed by a UDF, it changes
back automatically after the UDF is executed.

FoxPro behavior: SELECT() and SELECT(0) return the number of the selected
work area.

SELECT(1) returns the highest numbered available work area.

In FoxPro, if the current work area is changed in a UDF, that will
become the current work area after the UDF has executed unless
another is explicitly selected.

Action: When using SELECT to open a database in an available work area,
change the syntax to SELECT(1) to avoid closing the database
already open in the current work area.

To select the work area of a particular database, use the SELECT
command.

Or SET COMPATIBLE on and SELECT() will behave as it does
in dBASE.

Alphabetical List of Potential dBASE IV Issues

Comment: If your program tests the value of SELECT and depends on
numbered work areas, you might need to change the program's
logic to take account of the FoxPro SELECT function returning
the highest available work area rather than the lowest.

Example: dBASE
SELECT()

FoxPro
SELECT(1)

Alphabetical List of Potential dBASE IV Issues

SET("ATTRIBUTES") XE "SET(\"ATTRIBUTES\")"§
Level: 2

dBASE IV behavior: SET("ATTRIBUTES") returns a string consisting of the seven
color pairs established with the SET COLOR OF command.

FoxPro behavior: Generates an error.

Action: In applications generated by the dBASE Applications Generator,
this code can usually be commented out.

If a program relies on finding out colors set using the SET
COLOR TO command, you should write code that saves these
colors to memory variables after the SET COLOR TO command is
issued. These memory variables can then be interrogated instead
of using the SET("ATTRIBUTES") function.

Comment: SET COLOR TO acts the same in dBASE and FoxPro, so
programs that manipulate color usually behave the same way as
well.

FoxPro will return dBASE II-style color information from the
SYS(2001,'COLOR') or SET("COLOR") functions.

SET("BORDER") XE "SET(\"BORDER\")"§
Level: 3

dBASE IV behavior: Returns border type key word.

FoxPro behavior: Returns a string of ten characters which compose the border.

Action: Parse the return string and use the ASC() function, which returns
the ASCII number. Check to see whether the ASCII code is of
single, double, or panel type.

SET CATALOG
XE "SET CATALOG"§Level: 1

dBASE behavior: The catalog is a database file with the extension .CAT and contains
a record for each file in an application. The following catalog-
related commands and functions are supported in dBASE:

SET CATALOG TO <catalog> establishes the current catalog.

SET CATALOG ON | OFF activates and deactivates the catalog.

FoxPro behavior: Not supported. Catalog commands are ignored.

Action: Use ADIR() to find files matching a particular file skeleton.

SET("CATALOG") XE "SET(\"CATALOG\")"§
Level: 2

dBASE IV behavior: Returns ON or OFF.

Alphabetical List of Potential dBASE IV Issues

FoxPro behavior: Generates an error.

Action: Remove this function. It is not supported in FoxPro.

Alphabetical List of Potential dBASE IV Issues

SET COLOR TO
XE "SET COLOR TO"§Level: 3

dBASE IV behavior: SET COLOR TO (with no color pairs listed) resets the screen
colors to black and white.

FoxPro behavior: SET COLOR TO leaves the current screen colors unchanged.

Action: None required. To get a monochrome color scheme in FoxPro,
use the code in the example below.

Example: dBASE
SET COLOR TO

FoxPro
SET COLOR TO W/N, N/W, N
or
SET COLOR SCHEM TO monochrome

SET DBTRAP XE "SET DBTRAP"§ (versions 1.1 and 1.5 only)
Level: 1

dBASE IV behavior: When DBTRAP is set on, UDFs and interrupt routines are
prevented from executing certain commands and functions.

FoxPro behavior: Generates an error.

Action: Remove this function.

Comment: You may add commands to UDFs to save the environment at the
beginning and restore it at the end. FoxPro relies on the
programmer not to execute commands such as PACK or MODIFY
STRUCTURE in UDFs or interrupt routines that might disrupt the
function or procedure that called the UDF or interrupt routine.

SET DESIGN XE "SET DESIGN"§
Level: 2

dBASE IV behavior: This command disables all design modes and prevents the user
from creating or editing databases, reports, screens, queries, or
applications.

FoxPro behavior: Not supported. SET DESIGN is ignored.

Action: None required.

Comment: By modifying the FoxPro system menu, you can easily remove or
disable the New and Open options from the File menu to prevent
users from creating or modifying files.

SET("DESIGN") XE "SET(\"DESIGN\")"§
Level: 2

dBASE IV behavior: Returns ON or OFF.

Alphabetical List of Potential dBASE IV Issues

FoxPro behavior: Generates an error.

Action: Remove this function.

Comment: See the SET DESIGN command, above.

Alphabetical List of Potential dBASE IV Issues

SET DIRECTORY
XE "SET DIRECTORY"§Level: 2

dBASE IV behavior: This command establishes the full path of the default directory.

FoxPro behavior: Generates an error.

Action: Substitute the SET DEFAULT command.

Comment: SET DEFAULT in FoxPro acts exactly like SET DIRECTORY in
dBASE. In FoxPro, SET DEFAULT accepts a full subdirectory
path. In dBASE IV, it accepts only a disk drive letter.

Example: dBASE
SET DIRECTORY TO c:\data

FoxPro
SET DEFAULT TO c:\data

SET("DIRECTORY") XE "SET(\"DIRECTORY\")"§
Level: 2

dBASE IV behavior: Returns the full path of the default directory.

FoxPro behavior: Generates an error.

Action: Substitute the SET("DEFAULT") and SYS(2003) functions.

Comment: SET("DEFAULT") in FoxPro acts exactly like SET
("DIRECTORY") in dBASE. In FoxPro, SET DEFAULT accepts
a full subdirectory path. In dBASE IV, it accepts only a disk drive
letter.

Example: dBASE
curr_dir = SET("DIRECTORY")

FoxPro
curr_dir = SET("DEFAULT")+ SYS(2003)

SET("DISPLAY") XE "SET(\"DISPLAY\")"§
Level: 2

dBASE IV behavior: Returns the current video display mode.

FoxPro behavior: Generates an error.

Action: Store the previous video display mode in a variable before
switching modes.

Example: FoxPro
To store the video mode:

vmd=LEFT(SYS(2006),AT("/",SYS(2006))-1)+STR(SROWS(),2)
SET DISPLAY TO VGA50

To reset the video mode:

SET DISPLAY TO &vmd

Alphabetical List of Potential dBASE IV Issues

SET ENCRYPTION and SET("ENCRYPTION")
See Security.

Alphabetical List of Potential dBASE IV Issues

SET FIELDS
XE "SET FIELDS"§Level: 1

dBASE IV behavior: a) SET FIELDS can specify fields from multiple databases.

b) SET FIELDS TO without inputs changes SET FIELDS to off.

c) SET FIELDS /r makes a field read only.

FoxPro behavior: a) Fields in the SET FIELDS command come from one database,
but each work area can have its own field list.

b) SET FIELDS TO without inputs changes the field list to the
null string.

c) The fields in a BROWSE can be made read only, but not
individual fields in a SET FIELDS command.

Action: a) Create a memory variable that stores a field list and macro
substitute it into list-type commands.

or

Convert SET FIELDS commands with fields from more than one
database to separate SET FIELDs commands for each database.

b) SET DB4 COMPATIBLE on and SET FIELDS without inputs
will SET FIELDS to off.

Example: dBASE
SET FIELDS TO customer->cust_id, orders->order_amt
LIST

FoxPro
fld_strng = "customer.cust_id, orders.order_amt"
LIST &fld_strng
or

SET FIELDS TO customer.order_amt
LIST
SET FIELDS TO orders.cust_id
LIST

SET FORMAT
XE "SET FORMAT"§Level: 2

dBASE IV behavior: dBASE format files (.FMTs) can contain setup and cleanup code
in addition to @SAYs and @GETs.

FoxPro behavior: Format files with commands and functions other than @SAYs and
@GETs generate an error.

Action: Move cleanup and setup code outside the format file.

Comment: If you convert .SCR files to .SCX, replace the commands that open
the format file and initiate editing (EDIT, CHANGE, APPEND, or

Alphabetical List of Potential dBASE IV Issues

READ) and that close the format file afterwards with a DO
command that calls the generated screen file.

Alphabetical List of Potential dBASE IV Issues

SET IBLOCK TO (version 2.0 only)
Level: 2

dBASE IV behavior: Changes the default size of the indexing block to enhance
performance.

FoxPro behavior: Generates an error.

Action: Remove the SET IBLOCK command. It is not necessary.

Comment: Because Rushmore optimization in FoxPro is not affected by the
size of the indexing block, this command is not necessary.

SET INSTRUCT
XE "SET INSTRUCT"§Level: 3

dBASE IV behavior: Determines the level of prompting in the Control Center.

FoxPro behavior: Not supported. SET INSTRUCT is ignored.

Action: Remove this command.

SET("INSTRUCT") XE "SET(\"INSTRUCT\")"§
Level: 2

dBASE IV behavior: Returns ON or OFF.

FoxPro behavior: Generates an error.

Action: Remove this function.

SET KEY XE "SET KEY"§ (version 1.5 only)
Level: 2

dBASE IV behavior: Displays only records whose ordering index matches a specified
condition. This command uses an index key rather than searching
the database sequentially from the top.

FoxPro behavior: Generates an error.

Action: Remove this command and use the SET FILTER command.

Comment: SET FILTER also uses an index key. If the filter expression is
optimizable, Rushmoreä will speed execution still further.

Example: dBASE
SET ORDER TO TAG ZIP
SET KEY TO "94000","94999"

FoxPro
SET FILTER TO zip >= "94000" AND zip <= "94999"

Alphabetical List of Potential dBASE IV Issues

SET LDCHECK XE "SET LDCHECK"§ (version 2.0 only)
Level: 2

dBASE IV behavior: Enables or disables language driver ID checking.

FoxPro behavior: Generates an error.

Action: Remove this command.

Comment: There is no equivalent command in FoxPro. If you need
international support, make sure you have FoxPro 2.5a which
offers state-of-the-art support for code page translation and
multiple collate sequences.

SET LIBRARY XE "SET LIBRARY"§ (version 1.5 only)
Level: 1

dBASE IV behavior: This command establishes a special procedure file that remains
open in addition to any others opened with SET PROCEDURE
TO.

FoxPro behavior: SET LIBRARY TO opens a FoxPro Application Programming
Interface library. If the command does not include an extension, it
generates the "File does not exist" error message. If it does, non-
API library files generate the "Library file is invalid" error
message.

The FoxPro SET PROCEDURE TO command allows only one
procedure file to be open at a time.

Action: Change SET LIBRARY TO to SET PROCEDURE TO. (Note
that SET PROCEDURE will close any procedure file that is open.)
To make the routines in the dBASE IV procedure library available
throughout an application, add them to the procedure file that you
open with SET PROCEDURE TO or place them in the main
startup program for the application.

SET("LIBRARY") XE "SET(\"LIBRARY\")"§ (version 1.5 only)
Level: 2

dBASE IV behavior: Returns a filename.

FoxPro behavior: Not supported. SET ("LIBRARY") is ignored.

Action: Change SET ("LIBRARY") to SET ("PROCEDURE").

Comment: See also the SET LIBRARY command, above.

Example: dBASE
curr_lib = SET("LIBRARY")

FoxPro
curr_lib = SET("PROCEDURE")

Alphabetical List of Potential dBASE IV Issues

Alphabetical List of Potential dBASE IV Issues

SET MBLOCK XE "SET MBLOCK"§ (version 2.0 only)
Level: 2

dBASE IV behavior: Changes the default size of blocks that are allocated to new memo
field files.

FoxPro behavior: Generates an error.

Action: Replace SET MBLOCK with SET BLOCKSIZE or remove the
SET MBLOCK command.

Comment: SET MBLOCK in dBASE IV is similar to SET BLOCKSIZE,
found in both FoxPro and dBASE IV. The difference is that SET
MBLOCK can be used independently with SET IBLOCK whereas
SET BLOCKSIZE in dBASE IV affects block size for both
indexes and memo files. Since Rushmore optimization in FoxPro
is not affected by the size of the indexing block and since SET
BLOCKSIZE in FoxPro does not affect the index block size, this
command is not necessary.

SET MESSAGE XE "SET MESSAGE"§
Level: 3

dBASE IV behavior: dBASE supports the optional AT key word for specifying message
location.

FoxPro behavior: FoxPro ignores the AT key word.

Action: None required.

Comment: You can replace AT with one of the FoxPro alignment key words
LEFT, CENTER, or RIGHT.

SET PAUSE XE "SET PAUSE"§
Level: 3

dBASE IV behavior: Causes SQL Select output to pause after each full screen.

FoxPro behavior: SET PAUSE is ignored. FoxPro behaves as if PAUSE is on by
default.

Action: None required.

SET("PAUSE") XE "SET(\"PAUSE\")"§
Level: 2

dBASE IV behavior: Causes SQL Select output to pause after each full screen.

FoxPro behavior: Generates an error. FoxPro behaves as if PAUSE is on by default.

Action: Remove this function.

SET PRECISION XE "SET PRECISION"§
Level: 3

Alphabetical List of Potential dBASE IV Issues

dBASE IV behavior: Determines the number of digits between 10 and 20 used in math
calculations. The default is 16.

FoxPro behavior: Not supported. SET PRECISION is ignored.

Action: Remove this command.

Comment: Precision in FoxPro is 16 digits and is not settable.

SET("PRECISION") XE "SET(\"PRECISION\")"§
Level: 2

dBASE IV behavior: Returns the number of digits used in math calculations.

FoxPro behavior: Generates an error.

Action: Remove this function.

Comment: Precision in FoxPro is 16 digits and not settable.

SET PRINTER TO FILE XE "SET PRINTER TO FILE"§
Level: 3

dBASE IV behavior: If no file extension is specified, dBASE writes a file with a .PRT
extension.

FoxPro behavior: If no extension is supplied, FoxPro writes a file without an
extension.

Action: None required. SET DB4 COMPATIBLE on and .PRT will be the
extension assigned by default to print files.

SET("SQL") XE "SET(\"SQL\")"§
Level: 2

dBASE IV behavior: Returns ON or OFF.

FoxPro behavior: Generates an error.

Action: Remove this function.

Comment: SQL is integrated in FoxPro and does not need to be turned on or
off. See SQL.

SET TITLE XE "SET TITLE"§
Level: 3

dBASE IV behavior: Turns the catalog file title prompt on and off.

FoxPro behavior: Not supported. SET TITLE is ignored.

Action: None necessary.

Comment: Catalogs are not supported in FoxPro.

SET("TITLE") XE "SET(\"TITLE\")"§
Level: 3

Alphabetical List of Potential dBASE IV Issues

dBASE IV behavior: Returns ON or OFF.

FoxPro behavior: Always returns false.

Action: None necessary.

Comment: Catalogs are not supported in FoxPro.

Alphabetical List of Potential dBASE IV Issues

SET TRAP
XE "SET TRAP"§Level: 3

dBASE IV behavior: When on, the debugger is invoked when you press the ESC key.

FoxPro behavior: Not supported. SET TRAP is ignored.

Action: None required. Run program with trace and debug window open.

Comment: FoxPro is a windowing application, so you can see both your
application and the debug and trace windows simultaneously.
There is no need to toggle between your application and your
debugging environment.

To imitate SET TRAP, use the SET ECHO command. This will
bring up the Trace window when an error occurs.

Example: FoxPro
ON ERROR SET ECHO ON

SET("TRAP") XE "SET(\"TRAP\")"§
Level: 2

dBASE IV behavior: Returns ON or OFF.

FoxPro behavior: Generates an error.

Action: Run program with trace and debug window open.

SET VIEW XE "SET VIEW"§
XE "SET (\"TRAP\")"§Level: 2

dBASE IV behavior: Performs a query or restores a view from a dBASE III Plus view
(.VUE) file.

FoxPro behavior: Generates an error if a query is specified.

Action: If SET VIEW is running a query, replace the command with the
DO command. If SET VIEW specifies a .VUE file, no action is
necessary.

Comment: See the section titled "Using dBASE queries" as some queries may
need to be modified before running properly in FoxPro.

Example: dBASE
SET VIEW TO myquery.qbe

FoxPro
DO myquery.qbe

SET("VIEW") XE "SET(\"VIEW\")"§
XE "SET (\"TRAP\")"§Level: 2

dBASE IV behavior: Returns ON or OFF.

FoxPro behavior: Generates an error.

Alphabetical List of Potential dBASE IV Issues

Action: Save the VIEW to a memory variable after using the SET VIEW
command, and interrogate this variable instead of calling the
SET("VIEW") function.

Alphabetical List of Potential dBASE IV Issues

SET("WINDOW") XE "SET(\"WINDOW\")"§
Level: 2

dBASE IV behavior: Returns the name of the default window for memo fields.

FoxPro behavior: Generates an error.

Action: Save the name of the window created by the SET WINDOW OF
MEMO command in a variable and interrogate this variable.

SQL XE "SQL"§
Level: 1

dBASE IV behavior: To work with dBASE data in SQL, you must create an SQL
database and convert the dBASE databases to SQL tables (which
are stored in a group of .DBF files). To activate and deactivate
SQL mode, you must use SET SQL ON | OFF.

FoxPro behavior: FoxPro supports CREATE CURSOR, CREATE TABLE,
INSERT, and SELECT. These commands can be interspersed
with standard Xbase commands and do not require a semicolon at
the end. SET SQL ON and SET SQL OFF are not required and are
ignored by FoxPro.

Action: Complex dBASE IV SQL programs will not run in FoxPro and
will have to be rewritten in FoxPro.

STORE XE "STORE"§XE "Arrays"§
Level: 4

dBASE IV behavior: If you use the name of an array in a STORE command with no
reference to array elements, dBASE IV releases the array from
memory and creates a single memory variable with the same name.

FoxPro behavior: If you use the name of an array in a STORE command with no
reference to array elements, FoxPro assigns the specified value to
every element in the array.

Action: No action is required unless your program relies on STORE to
transform an array to a memory variable.

To prevent STORE in FoxPro from initializing all elements of an
array with one value, SET COMPATIBLE DB4 on.

SUM()
XE "SUM()"§Level: 3

dBASE IV behavior: The number specified in SET DECIMALS is the number of
decimal places that are output by SUM.

FoxPro behavior: The number of decimal places in the database structure for the
field being summed determines the number of decimal places that
are output.

Alphabetical List of Potential dBASE IV Issues

Action: SET COMPATIBLE DB4 on to use the number of decimal places
specified in SET DECIMALS.

Alphabetical List of Potential dBASE IV Issues

TAG() XE "TAG()"§
Level: 2

dBASE IV behavior: dBASE allows the use of TAG() which returns active tag name or
a null string if no tag is active.

FoxPro behavior: Generates an error.

Action: Replace with SYS(22).

Example: dBASE

TAG()

FoxPro

SYS(22)

TAGCOUNT() XE "TAGCOUNT() "§ (version 1.5 only)
Level: 2

dBASE IV behavior: The TAGCOUNT function returns the number of tags in an .MDX
file.

FoxPro behavior: Generates an error.

Action: Use user-defined function.

Comment: The Migration Kit includes a procedure library with a user-defined
function called TAGCOUNT() that behaves exactly like the
dBASE function TAGCOUNT. See the section titled "Calling
user-defined functions" above.

TAGNO() XE "TAGNO()"§ (version 1.5 only)
Level: 2

dBASE IV behavior: The TAGNO function returns the number of the tag specified as
input.

FoxPro behavior: Generates an error.

Action: Use user-defined function.

Comment: The Migration Kit includes a procedure library with a user-defined
function called TAGNO() that behaves exactly like the dBASE
function TAGNO. See the section titled "Calling user-defined
functions" above.

Alphabetical List of Potential dBASE IV Issues

Transaction processing XE "Transaction processing"§
Level: 1

dBASE IV behavior: Although infrequently used, dBASE IV supports a transaction
processing system. The transaction processing facilities include:

BEGIN TRANSACTIONXE "BEGIN
TRANSACTION"§ ... END TRANSACTIONXE "END
TRANSACTION"§ command

ROLLBACKXE "ROLLBACK"§ command
RESETXE "RESET"§ command
NOLOGXE "NOLOG"§ key word in the USE command
COMPLETEDXE "COMPLETED"§ function
ROLLBACK function
ISMARKEDXE "ISMARKED"§ function

FoxPro behavior: These commands and functions are not supported and generate
errors.

Action: Replace these functions and commands with equivalents supported
by Novell Netware's Transaction Tracking System or with third-
party software. FoxPro 2.5 for MS-DOS includes a library
enabling applications to call the Netware TTS. See Appendix E
for a list of products that offer transaction processing and a wealth
of other network and security features.

UNIQUE() XE "UNIQUE()"§ (version 1.5 only)
Level: 2

dBASE IV behavior: The UNIQUE function evaluates to .T. if an index was created
with UNIQUE set ON or with the UNIQUE key word, or .F.
otherwise.

FoxPro behavior: Generates an error.

Action: This function must be removed.

Alphabetical List of Potential dBASE IV Issues

USE XE "USE"§ NOSAVE XE "NOSAVE"§ , NOLOG XE "NOLOG"§ ,
EXCLUSIVE, AGAIN XE "EXCLUSIVE"§
Level: 2

dBASE IV behavior: a) NOSAVE causes dBASE IV to erase the database when it is
closed.

b) The NOLOG key word suppresses the recording of changes in
the transaction log if one is currently open.

c) By default SET EXCLUSIVE is off.

d) In dBASE IV 1.1, AGAIN assigns an alias that's the same as the
letter of the work area. In dBASE IV 1.5, the assigned alias is an
underscore character plus the number of the work area (e.g. _2).

FoxPro behavior: a) The NOSAVE key word is not supported and generates an error.

b) The NOLOG key word is not supported and generates an error.

c) By default, SET EXCLUSIVE is on in FoxPro.

d) AGAIN behaves like dBASE IV 1.1--the assigned alias is the
letter of the work area into which the second copy of the database
is opened.

Action: a) Use CREATE CURSOR to define a temporary database that is
automatically removed from memory when it is closed. Or add a
DELETE FILE command to erase the database after you close it.

b) The NOLOG key word is not supported and should be removed.

c) If your application needs shared use of a database, set
EXCLUSIVE off.

d) Assign the same alias dBASE would, namely, an underscore
character plus the number of the work area into which the database
is opened.

USER
See Network functions.

WINDOW()
XE "WINDOW()"§Level: 2

dBASE IV behavior: Returns the name of the active window.

FoxPro behavior: Generates an error.

Action: Substitute either WONTOP (which returns the topmost window)
or WOUTPUT (which returns the current output window).

Comment: FoxPro has a more advanced windowing model where it is
possible for a window to be "active" in two senses--it can be on
top of one or more windows, and/or it can be receiving output.

A UDF called WINDOW() in FOXPROC.UDF allows you to

Alphabetical List of Potential dBASE IV Issues

leave instances of the dBASE function WINDOW() unchanged if
you wish. The UDF returns the value of the FoxPro function
WONTOP(). See the section titled "Calling user-defined
functions" above.

Example: dBASE
wind_name = WINDOW()

FoxPro
wind_name = WONTOP()
or
wind_name = WOUTPUT()

Migrating Clipper Summer '87 applications

Migrating Clipper Summer '87 applications: an overview
Clipper Summer '87 applications consist of a number of files. Together, the Migration
Kit, along with the native conversion capabilities of FoxPro, will make your data,
indexes, format and program files work smoothly in FoxPro. dBASE III Plus reports
(.FRMs) and labels (.LBLs) will often need to be recreated in FoxPro.

Steps to takeXE "Steps to Take"§
1. Create a backup copy of all your files. Do not work on your original files!

2. Bring your Clipper databases into FoxPro.

3. Convert .NTX indexes to FoxPro indexes.

4. If desired, use the File Converter to convert .FMTs and .PRGs to FoxPro screens.

5. Recreate reports and labels in FoxPro format.

6. "Extract" procedures and functions which aren't visible to FoxPro

7. Use the Program Analyzer to find and address areas of potential incompatibility.

8. Enjoy the speed and power of FoxPro!

A note on Clipper 5.x applications
The Migration Kit only supports Clipper Summer '87. However, unless Clipper 5.x
applications fully embrace 5.x-specific, the Migration Kit may be of assistance. Clipper
applications which make use of 5.x-specific features such as code blocks, user-defined
commands, classes, new operators, replaceable database drivers, etc. will be very
difficult to convert. Microsoft cannot offer support for this conversion process.

A list of Clipper 5.x syntax which is not supported by FoxPro can be found in Appendix
F.

Using Clipper database, memo, and index files

Databases
Clipper Summer '87 and FoxPro use the same native file format (.DBF) so you can use
your databases right away without any conversion. Type USE <database name> in the
Command window or choose File...Open from the FoxPro menus.

Memo files
FoxPro and Clipper use different formats for storing memo fields. The XE "Memo
files"§FoxPro format allows you to store an unlimited amount of data, and any kind of
binary data, in a memo field. (You're limited by disk space, of course.) If you wish,
FoxPro will maintain and write Clipper .DBT files, however you won't benefit from the
advantages of FoxPro memo fields.

There are two ways to convert .DBT files to FoxPro style memo fields. The first way is

Migrating Clipper Summer '87 applications

to make a structure change in the data file. When Fox saves the new structure it creates
the FoxPro style memo field. The second way is to copy the structure of the file to a new
file and then append the records from the old file into the new file. Once the file is
converted you won't be able to read it under Clipper, so make sure you do this on backup
copies of the data files.

FoxPro can easily convert a memo field to back to .DBT format using the command
COPY TO <database name> TYPE FOXPLUS.

Migrating Clipper Summer '87 applications

Indexes

.NDX indexes
If you used the .NDX driver with your Clipper Summer '87 application, FoxPro can
(natively, without the Migration Kit) recreate these indexes in .IDX format. FoxPro uses
a more efficient indexing scheme that results in better performance as well as index sizes
of one-half to one-third the size of .NDX indexes.

FoxPro will convert .NDXXE ".NDX"§ indexes when a USE command names .NDX
indexes or a SET INDEX TO command that opens an .NDX index is issued.

.NTX indexes
If you have .NTX indexes, the Migration Kit will allow you to convert them to FoxPro
indexes. To convert these indexes, you need to start the Migration Tools. See the
section titled "Running the Migration Tools" on page 9. When the Migration Tools
application is running, choose "Convert files..." from the Migration Tools menu. This
will bring up the File Converter dialog.

µ §
The Convert Files dialog allows you to choose several .NTX files to convert at once.

To select an .NTX for conversion, either double-click on the filename, or highlight it and
then press ENTER. Selected files will have an asterisk placed next to the filename on the
left (or a check mark in FoxPro 2.5 for MS-DOS). You can select all the files in a
directory for processing by clicking the Select All button, or you can start over by
clicking the Clear All button. To cancel selection of a single file, double-click on the
filename, or highlight it and press the ENTER key. The File Converter allows you to
select a mix of files--some are dBASE IV files like. SCRs, .FRMs, and .LBLs. Others
are .FMTs and .PRGs which can be converted to FoxPro screens. This is discussed in the
section titled "Converting FMTs and PRGs."

To convert files in another directory, click the Directory button and move to a new
directory. To convert files in multiple directories, first select and convert the files in one
directory, and then select and convert files in another directory.

When you have finished selecting files, click the Process button. This brings up the
following dialog:

µ §
Choose a database to associate with the converted index and an index type.

Choosing a database
To convert an .NTX index, you must associate it with the database on which it is based.
Click the "Choose..." button. This brings up a file dialog box which allows you to
browse your files to find the database.

Migrating Clipper Summer '87 applications

Selecting an index type
The dialog shows which NTX is being converted. You will be presented with this dialog
for each .NTX you selected to convert. The dialog offers you the option to either
create .CDX or .IDX indexes. Indexes of the .IDX are functionally identical to .NTX
indexes--both are single-entry indexes. If you wish to make the fewest changes to your
program, you should convert .NTX indexes to .IDX indexes.

However, the .CDX format offers a number of advantages. A .CDX can contain multiple
entries or "tags." In addition, .CDX indexes are automatically opened by FoxPro when
you open the database associated with that index.

Creating .IDX indexes

To create an .IDX index, click on the .IDX radio button. Note that the Migration Tools
automatically reads the index expression from the .NTX file into the field titled "Index
expression". Once you have selected a database, you can name the .IDX file. By default,
it will have the same name as the .NTX file, only with a .IDX extension.

When you have made these choices, click OK. The .NTX will be converted to an .IDX.
The new file will be written to the same directory as the original .NTX.

Creating .CDX indexes

To create a .CDX index, click on the .CDX radio button. Whether you create a .CDX
or .IDX, the Migration Tools reads the index expression from the .NTX file into the field
titled "Index expression." After you choose a database, you can name the index "tag"
anything you please as long as it conforms to the same rules as MS-DOS file names. The
default will be the first ten characters of the index expression. Note that in some cases,
this will not be a valid tag name and you will need to change it.

When you're satisfied with these settings, click OK. The .NTX will be converted to
an .CDX. The new file will be written to the same directory as the associated database,
unlike IDXs

If you convert additional .NTXs and you use the name of an existing .CDX, the
Migration Tools will add new tags to the existing .CDX.

Migrating Clipper Summer '87 applications

Functions in index expressions.

If your .NTX index expression includes a function, that function must be available to
FoxPro. User-defined functions must be rewritten (at least temporarily) as .PRG files.
These should then be placed in the same directory as MIGRATE.APP and the other
Migration Kit files. If a function is not available, you will get an error and be instructed
to make the file available to the converter.

If the function is a Clipper function not supported by FoxPro, it must be rewritten as a
UDF in FoxPro or the index needs to be rebuilt in Clipper without the function and then
converted using the Migration Tools. (The index expression is not editable in the .NTX
converter dialog.) In some cases it may be easier to simply create the index from scratch
in FoxPro.

Creating FoxPro screen files from .FMT and .PRG files
Files with @SAY commands can be converted to FoxPro screen files (.SCX). See the
section titled "Converting FMTs and PRGs" on page 11.

Reports and Labels
FoxPro 2.5 for MS-DOS will run or, at your option, convert dBASE III Plus-style reports
(.FRMs) and labels (.LBLs).

To run or modify dBASE III Plus-style reports (.FRMs) and labels (.LBLs), in FoxPro
2.5 for Windows, you will need to replace the Transporter program in your FoxPro for
Windows directory. The Transporter in FoxPro 2.5 for Windows will not handle dBASE
III Plus-style reports and labels. (If you have FoxPro 2.5a, the Transporter will handle
these files.)

Note that by replacing your current Transporter, you will lose any changes you may have
made to it. (To change this file, you would have had to have opened it like any other
program file, make changes to the code, and save those changes. Merely using the
Transporter will not change it.) If you are unsure whether to replace the old file, rename
it or move it to a new location.

On the Migration Kit disk, there is a directory called NEWTPORT. In that directory is a
file called TRANSPRT.PRG. Copy this file into the same directory as FOXPROW.EXE.
Usually this will be a directory called \FOXPROW. You will now be able to convert and
then run or modify dBASE III Plus .FRMs and .LBLs.

Unlike FoxPro 2.5 for MS-DOS, you will need to include the file extensions (.FRM
or .LBL) when referring to these files in FoxPro for Windows.

If you hard-coded your reports (or labels) they should run like any other program, though
you should use the Program Analyzer to check for any language incompatibilities. If you
used a third party product such as R&R Reportwriter from Concentric, you can continue
to use that product, as long as it supports FoxPro indexes, (which R&R does).

Note that the Migration Kit will convert dBASE IV-style reports (.FRMs) and labels

Migrating Clipper Summer '87 applications

(.LBLs). However, the file converter will return an error if it encounters dBASE III
Plus-style files.

Migrating Clipper Summer '87 applications

Visibility of functions and procedures
In Clipper Summer '87, functions and procedures can be located in any .PRG and called
from any .PRG. In FoxPro, called functions and procedures must either be in the same
PRG from which they're called, or in the calling stack above the .PRG calling the
function or procedure.

The Migration Tools provide a simple way to modify your program files to accommodate
this difference. The Migration Tools can copy functions and procedures from a set
of .PRGs to either a single procedure file or individual .PRGs. It can also make a copy
of the original .PRGs minus the functions and procedures that were in them.

"Extracting" functions and procedures
To address the visibility issue, choose "Extract procs/funcs..." from the Migration Tools
menu. You will then be presented with a dialog similar to those used elsewhere in the
Migration Tools. Note that your original program files are NOT changed by this
process. Procedures and functions are actually copied ("extracted") out of the original
file and place into a new file.

Also note that if you have used the Program Analyzer on these files, you have two
different copies of the files. One copy on disk, and the other in the analysis file (.EXP)
memo field. Make sure you are "extracting" from the right files.

µ §
Choose the .PRG files from which to "extract" procedures and functions.

To select a file, either double-click on the filename, or highlight it and then press
ENTER. Selected files will have an asterisk placed next to the filename on the left (or a
check mark in FoxPro 2.5 for MS-DOS). You can select all the files in a directory for
processing by clicking the Select All button, or you can start over by clicking the Clear
All button. To cancel selection of a single file, double-click on the filename, or highlight
it and press the ENTER key.

To convert files in another directory, click the Directory button and move to a new
directory. To convert files in multiple directories, first select and convert the files in one
directory, and then select and convert files in another directory.

Migrating Clipper Summer '87 applications

When you have finished selecting files, click the Process button. This brings up the
dialog pictured below.

µ §
This dialog allows you to place procedures and functions in a single procedure file or individual .PRG files.

Single procedure file or multiple .PRGs
Functions and procedures can be extracted to a single procedure file (a program file with
the .PRG extension). Then, by adding the command SET PROCEDURE TO <procedure
file name> to your startup program, all the procedures and functions in the procedure file
will be available throughout your application.

Alternatively, functions and procedures can be extracted to individual .PRG files--one for
each function and procedure and named like the original function or procedure (unless
the name is greater than eight characters, in which case it is truncated).

By default, a single procedure file is created. Click on the radio button which reflects
your choice.

Creating a single procedure file

If you choose to create a single procedure file, you need to choose a name and directory
for that file. Click the "Choose..." button. Change to the directory you want the file to
be written to and type in the name of the file. Then click the "Create" button. It is best
to choose a directory other than the directory of the source files. The Migration Kit will
always prompt you before overwriting any files, but choose a different directory anyway
to avoid accidentally saying "yes" to an overwrite prompt.

Creating multiple .PRGs

If you want to create individual .PRG files, you need to select a destination directory for
those files. Click the "Choose" button and navigate to the desired directory. Then click
the "Select" button.

Creating new versions of the original files with the procedures and functions
removed

If you would like a copy of the source .PRG files (the ones that are searched for
procedures and functions) that has all procedures and functions removed, check the check
box at the bottom of the screen. This will create a file of the same name as the original.
The file will be written to the same directory as the procedure file if you've chosen that
option, or the directory of the multiple .PRGs.

Again, the Migration Kit will always prompt you before overwriting any files. Don't be
too quick to say "yes."

Addressing Clipper language compatibility issues

Overview
Although there are some incompatibilities between Clipper Summer '87 and FoxPro,

Migrating Clipper Summer '87 applications

most Clipper commands and functions work exactly the same way in FoxPro.

To take care of those commands and functions that don't work in FoxPro, first use the
Program Analyzer to find potential compatibility problems. See the section titled "Using
the Program Analyzer." After the Program Analyzer has created a database of potential
issues, you can begin eliminating each in turn. After you have addressed these areas, you
can then try running your application.

Each issue the Program Analyzer finds is documented in the section titled "Alphabetical
list of potential Clipper issues." Each issue is described and an explanation offered on
how programs can be modified so they perform the way you expect them to in FoxPro.

Main compatibility issues

Although the Program Analyzer might find many potential problems in your application,
most all can be resolved, often by changing a single line of code. Also, you might find
that few types of changes are required, although you might find many occurrences of the
same few issues.

The amount of code you will have to change will depend upon how much you utilized
features unique to Clipper. If your code is plain vanilla Xbase, you will only need to
make minimal changes. In a number of cases, you may be removing code because
FoxPro automatically provides some functionality that required coding or a third-party
library in Clipper.

There are six areas where you will need to focus most of your attention. These are:

1. Function call syntax

2. ACHOICE(), DBEDIT(), and MEMOEDIT()

3. Error handling

4. Third party libraries

5. Arrays

6. Colors

Other compatibility issues
Besides the main compatibility issues listed above, there are a few more categories of
issues that need to be addressed in migrating a Clipper Summer '87 application.

1. Windows-specific issues

2. Binary functions

3. SET commands

3. Keystrokes

4. Hard-coded file extensions

Migrating Clipper Summer '87 applications

Function CallsXE "Function Calls"§
The bulk of the coding changes you will have to make will be the result of the different
syntax used by Clipper and FoxPro to perform function calls.

Clipper allows functions to be called without assigning the return result to a variable.
FoxPro requires that results be assigned to a variable or that an equal sign be placed in
front of the function. The following example shows how a Clipper function made in this
way would need to be modified.

Clipper:
FSEEK(handle,15,0)

FoxPro:

= FSEEK(handle,15,0)
or
dummy = FSEEK(handle,15,0)
or
? FSEEK(handle,15,0)

The Program Analyzer will flag instances of functions, including user-defined functions,
made in the Clipper manner. The issue listed will be "Bad function call." As shown in
the example, modify your code by placing an equal sign in front of the function,
assigning the return value to a variable, or using the ? command. If FoxPro supports the
function, it will then work properly.

ACHOICE(), DBEDIT(), and MEMOEDIT()
These three frequently used functions are not supported in FoxPro. However, FoxPro
does offer a number of alternatives for ACHOICE(), and some almost direct equivalents
exist for DBEDIT() and MEMOEDIT(). This information along with examples can be
found in the section titled "Alphabetical list of potential Clipper issues".

Migrating Clipper Summer '87 applications

Error handlingXE "Error handling"§
Error handling is one area where recoding will be necessary. Clipper error handling is
based on the BEGIN SEQUENCE...[BREAK]...END structure. This allows the
programmer to encapsulate a function call in a BEGIN SEQUENCE...END structure and
then, from a function called, possibly nested several levels below, to return to the END
statement via the BREAK keyword. This is a bit like a Longjump in C or a GoTo in
Basic.

Example: Clipper
OldScreen=SAVESCREEN(0, 0, 24, 79,)
CLEAR
@ 2, 12 SAY "Please standby while Printing!"
BEGIN SEQUENCE

SET PRINT ON
Foo()

END
SET PRINT OFF
CLEAR
@ 2, 12 SAY "Cannot print report at this time!"
@ 3, 12 SAY "Please try again later!"
RESTSCREEN(0, 0, 24, 79, OldScreen)

FUNCTION Foo
USE Test Exclusive
IF NETERR()

BREAK && If you can't get exclusive return
&& to END statement

ENDIF
PrintIt() && is a hard-coded report that

&& requires exclusive file use
&& It never executes if Break hit.

RETURN .T.

This is type of program flow is not possible in FoxPro unless you write some fairly
elaborate code. It is recommended that instead of trying to simulate SEQUENCE...
[BREAK]...END that you reengineer the error handling code using FoxPro's ON ERROR
command.

Error handling FoxPro-style
Errors that can be fatal errors in Clipper are easily handled in FoxPro. Both languages
provide some error handling internally. In Clipper Summer '87, error recovery was
provided in EXTEND.LIB with source code provided in ERRORSYS.PRG. Many
programmers added their own error handlers to provide for more graceful and trapable
exits when errors occurred. FoxPro provides much more extensive error handling
internally and traps for more types of errors than Clipper.

Migrating Clipper Summer '87 applications

FoxPro error handling is based on the ON ERROR command which specifies a procedure
to be executed when an error occurs. The error handling procedure is usually a lengthy
case statement which traps for specific errors. If those errors are fatal it should cancel
program execution (returning to FoxPro or to the operating system). If they are non-
fatal, the procedure would report the error and return to the calling program.

In FoxPro, you might add the following code in the calling part of your program:

Example: FoxPro
ON ERROR DO Err_Hand WITH ERROR(), MESSAGE(), ;
MESSAGE(1), SYS(16), LINENO(), SYS(102), SYS(100), ;
SYS(101), LASTKEY(), ALIAS(), SYS(18), SYS(5), ;
SYS(12), SYS(6), SYS(2003), WONTOP(), ;
SYS(2011), SYS(2018), SET("CURSOR")

In the case statement of the error handler you would have sections to handle specific
errors. To use the same case as the Clipper error above, you would trap for File is in
Use, or File is in use by another.

Assuming you defined a Message Window at the top of the Error handler, you could call
it to tell the user the problem. For example:

Example: FoxPro
PROCEDURE Err_Hand
PARAMETERS m_error, m_message, m_message2, ;
m_progname, m_lineno, m_prtset, m_console, m_device, ;
m_lastkey, m_alias, m_curget, m_defdriv, m_mem, ;
m_print, m_curdir, m_wontop, m_lockstat, ;
m_winname, m_cursor

DO CASE
CASE m_error= <error you want to trap>

<handle the error>
CASE m_error = 3 or ERROR() = 108

Activate Window Message
YN=" "
@ 1,1 Say "File is already in use! Retry Y/N ? "
Get YN
Read
If Upper(YN) $ "Y"

Retry
Else

Set Print Off
Return

Endif
CASE m_error= <some other error>

<handle the error>
...

Migrating Clipper Summer '87 applications

ENDCASE

FoxPro has many more built-in error messages than Clipper. You can easily handle them
all with a well designed error handler. That error handler can also be a powerful
debugging tool, providing you with information on the location and type of error that
occurs.

Simulating BEGIN SEQUENCE...[BREAK]...END in FoxPro
When nesting of calls isn't too deep, BEGIN SEQUENCE...[BREAK]...ENDXE
"BEGIN SEQUENCE...[BREAK]...END"§ can be simulated using DO WHILE loops.
Remember, however, that the deeper the nesting, the more advisable reengineering using
ON ERROR becomes.

In brief, this method consists of finding all occurrences of BREAK statements nested at
lower levels in the program code and changing these routines and all routines that call
them, all the way up to the original call in the BEGIN SEQUENCE block.

Example: FoxPro
DO WHILE .T.

<statements>...
IF break_cond

EXIT
ENDIF

<statements>...
ENDDO
 <recovery statements>...

Migrating Clipper Summer '87 applications

If the routine is a procedure you must change it to a function call.

Example Clipper
DO MyRoutine [WITH parm1, parm2, ...]

FoxPro
IF !MyRoutine ([parm1, parm2 ...])

EXIT &&If call is in original block
* or RETURN .F. &&If call is at lower level

ENDIF

If your routine is already a function, there are other changes that need to be made.

Example Clipper
MyRoutine ([parm1, parm2 , ...])

FoxPro
PRIVATE RVAL
RVAL = .F.
IF !MyRoutine(@RVAL [parm1, parm2, ...])

EXIT &&If ref is in BEGIN SEQ block
* or RETURN .F. &&If ref is at lower level

ENDIF
RETURN RVAL

Or

PRIVATE RVAL
RVAL = .F.
x = MyRoutine(parm1, parm2,@RVAL)
IF !rval

EXIT
* or RETURN .F.

ENDIF

Then change the function as follows:

Example: Clipper
FUNCTION MyRoutine
PARAMETERS parm1, parm2,...
DO Whatever
BREAK
DO Whatever
RETURN whatever

FoxPro
FUNCTION MyRoutine
PARAMETERS RVAL, parm1, parm2,...
DO Whatever

Migrating Clipper Summer '87 applications

RETURN .F.
DO Whatever
RVAL=whatever
RETURN .T.

Migrating Clipper Summer '87 applications

Third party libraries
A large number of third party libraries and utilities were available for Clipper and if you
have used one of them in your program, you will have to replace or remove those
functions. Some libraries such as NetLib, CommTools, dGE are available for FoxPro as
well. (dGE works with Clipper and FoxPro). One very commonly used library,
OVERLAY(), can easily be replaced with an FoxPro utility, Foxswap.

Other libraries, such as Funcky, Grumpfish, Artful have no analog in FoxPro. Some of
their functions can be replaced by writing your own UDFs. Getit, a popular library with
Clipper Summer '87, allowed for nested reads and gets. That functionality is built into
FoxPro. You can utilize up to five read levels. Also, a number of shareware offerings
are available on the Foxforum on CompuServe. If you have Funcky II you can use the
"C" functions and RUN them from within FoxPro.

Note: the Program Analyzer only searches for Clipper Summer '87 syntax that is
incompatible with FoxPro. It will not find calls to third party libraries. These need to be
found and removed (or reworked) manually, or they will generate compile or runtime
errors.

Arrays
Clipper Summer '87 arrays are one-dimensional while FoxPro's arrays can be two-
dimensional. Array handling functions are more extensive in FoxPro. (See page L2-27
in the FoxPro 2.5 Language Reference for a list.) Because FoxPro supports multi-
dimension arrays, Clipper functions such as ADIR() and AFIELDS(), which take several
arrays as arguments, require only one array in FoxPro.

Note that FoxPro does not support the AFILL() function, and that the TYPE() function
will not operate on arrays like it does in Clipper. A full explanation of how to modify
these four functions is in the section titled "Alphabetical list of potential Clipper
incompatibilities."

Color
FoxPro handles colors very differently than Clipper. You will find it easier to use the
FoxPro method of color management rather than trying to make your Clipper-style
colors work in FoxPro.

FoxPro uses color schemes which are sets of ten color pairs. The color pairs in a scheme
are used to color all the elements of the FoxPro user interface and the interface of any
applications created in FoxPro. (Note that in FoxPro for Windows, the Windows Control
Panel determines a number of colors in all Windows applications, including FoxPro.)

For instance, FoxPro uses a particular color pair of a scheme to show the difference
between a push button that is enabled versus one that is disabled. No code needs to be
written to affect the change in color. Similarly, the borders of a window change color
depending on whether it is active or not. FoxPro handles that color change
automatically.

FoxPro provides a number of predefined schemes. You can modify these or create your

Migrating Clipper Summer '87 applications

own from scratch. Color schemes are chosen with the SET COLOR SET command. To
modify a color scheme, use the SET COLOR OF SCHEME or the CREATE COLOR
SCHEME commands.

Example: FoxPro:
* Modify a color scheme and then load it
SET COLOR OF SCHEME 24 TO B/BG,W+/N, ;
BG+/BG,N/BG,N/BG,W+/GR,GR+/RB,N+/N,GR+/B,R+/B
SET COLOR SET TO SCHEME 24

For backwards compatibility, FoxPro also supports the SET('COLOR') function which
returns current color settings and the SET COLOR TO command to define a new color
setting. Together, these can offer the same functionality as the Clipper SETCOLOR()
function.

Note that FoxPro 2.5 for MS-DOS comes with a very useful application called
PROCOLOR which shows how to use FoxPro color schemes to your advantage.

Other compatibility issues

Windows Specific Problems

Printing
When printing hard-coded reports, some people have reported problems with the
Windows printer drivers. The solution, if you are using ?/?? to print is to use the FoxPro
commands, PRINTJOB/ENDPRINTJOB around your printing code. You also need to
use the MS-DOS printer drivers in Windows. If you are printing with @ SAY, printing
works correctly with SET DEVICE TO PRINTER, and even works with fonts.
However, be careful with fonts where you must watch out for proper spacing.

ASCII character set.
If you used ASCII codes to print items to the screen, these calls will not work properly in
the Windows product. The Windows version of FoxPro uses the ANSI character set,
rather than the ASCII equivalent. There is a function in FoxPro for Windows,
OEMTOANSI, which converts ASCII characters to their ANSI equivalents, but this will
not help if the characters are line drawing characters. They have no equivalent in the
ANSI character set.

Binary functions
Clipper supports five binary conversion functions not found in FoxPro: BIN2I, BIN2W,
BIN2L, I2BIN, L2BIN. However, on the Migration Kit disk in the \BINFUNC
directory, there is a file called BINFUNC.PRG with user-defined functions for each of
these Clipper functions.

By using the SET PROCEDURE TO command to refer to this file or by placing the
UDFs where they will be available in your program, you will not need to change these

Migrating Clipper Summer '87 applications

functions in your programs. They will execute as they did in Clipper.

SET commands
Many Clipper SET commands will accept a logical value. This will generate an error in
FoxPro. Since SET commands will accept memory variables as arguments, there is no
way for the Program Analyzer to always check if a logical value is being used with a
SET command.

Unfortunately, you will need to find such instances manually or run the application in
FoxPro and find them by encountering runtime errors. The SET commands which accept
logical values are:

SET
CENTURYXE
"SET
CENTURY"§

SET
EXCLUSIVEXE
"SET
EXCLUSIVE"§

SET
CONFIRMXE
"SET
CONFIRM"§

SET FIXEDXE
"SET FIXED"§

SET
CONSOLEXE
"SET
CONSOLE"§

SET
INTENSITYXE
"SET
INTENSITY"§

SET CURSORXE
"SET CURSOR"§

SET PRINTXE
"SET PRINT"§

SET DATEXE
"SET DATE"§

SET
SCOREBOARDXE
"SET
SCOREBOARD"§

SET
DELETEDXE
"SET
DELETED"§

SET
SOFTSEEKXE
"SET
SOFTSEEK"§

Migrating Clipper Summer '87 applications

SET
DELIMITERSXE
"SET
DELIMITERS"§

SET UNIQUEXE
"SET UNIQUE"§

SET ESCAPEXE
"SET ESCAPE"§

SET WRAPXE
"SET WRAP"§

SET EXACTXE
"SET EXACT"§

Migrating Clipper Summer '87 applications

Keystrokes
FoxPro and Clipper Summer '87, in many cases, map keys to different values. The
commands SET FUNCTION and SET KEY (an unsupported command), as well as the
functions INKEY()XE "INKEY()"§, LASTKEY()XE "LASTKEY()"§ and
NEXTKEY()XE "NEXTKEY()"§ (an unsupported function) could be affected by these
differences. Consult Appendix G for a table comparing Clipper key return values with
those of FoxPro and change your code accordingly.

The Program Analyzer flags all these functions and commands so you can identify the
areas of your program that may need to be modified.

Alphabetical list of potential Clipper issues

Below is a list of the known compatibility issues in running Clipper Summer '87
programs in FoxPro. Each issue describes the behavior of a function or command in
Clipper and in FoxPro. The Action section tells you what you should do to your
program, and an example is usually included. Any other relevant information is placed
in the comment section.

This information is also displayed in the Program Analyzer, with the exception of
examples which are not displayed in the Program Analyzer.

For the sake of brevity and conciseness, no attempt is made to reproduce the
documentation on these commands and functions. You can consult the Clipper and
FoxPro documentation on specific commands and functions for further details.

Each issue is assigned one of four levels:

· Level XE "Level "§1 commands and functions are those not supported in
FoxPro. These commands and functions must be removed or replaced with
FoxPro equivalents.

· Level 2 commands and functions will generate errors in FoxPro but often have
very close FoxPro equivalents.

· Level 3 commands and functions will not generate errors but behave differently
enough to merit attention.

· Level 4 commands and functions will not generate errors and will rarely cause a
problem in your program. Searching for Level 4 issues flags many lines of code
which will usually work fine.

Level assignments, while somewhat arbitrary, are designed to give you a sense of the
importance of an issue and the effort required to address it.

Alphabetical List of Potential Clipper Issues

== (comparison operator) XE "== (comparison operator)"§
Level: 3

Clipper behavior: For character strings, returns TRUE if the strings are of exactly of
the same length. Trailing spaces are ignored.

FoxPro behavior: Character strings must contain exactly the same characters,
including spaces, for the operation to return TRUE.

Action: Use the RTRIM(), LTRIM() or ALLTRIM() functions to remove
spaces from strings before comparing them.

Example: Clipper
IF string1==string2

<execute code>
ENDIF

FoxPro
IF ALLTRIM(string1)==ALLTRIM(string2)

<execute code>
ENDIF

ACHOICE() XE "ACHOICE()"§
Level: 1

Clipper behavior: ACHOICE() creates a menu based on two arrays. One of the
arrays stores prompts, the other stores Logical values to dim or not
dim the prompt array.

FoxPro behavior: Generates an error.

Action: Remove ACHOICE(). If ACHOICE() was used as a menu,
recreate it using the FoxPro Menu Builder. If it was used as a
picklist, replace it with a popup. For large lists, use a list array.
For short lists, a popup with prompt fields should work fine.

Alphabetical List of Potential Clipper Issues

Example: Example 1: ACHOICE() used to create a menu
Clipper:

DO WHILE .T.
menu_size=6

DECLARE cues[menu_size], msgs[menu_size]

cues[1] = " Orders "
cues[2] = " Styles "
cues[3] = " Tables "
cues[4] = " Totals "
cues[5] = " Reports "
cues[6] = " Get Totals "

msgs[1] = " Enter, Edit, Delete and View orders."
msgs[2] = " Enter, Edit, Delete and View Styles table.; Add or
change items."
msgs[3] = " Manage Tables."
msgs[4] = " View Totals."
msgs[5] = " Run any of the reports."
msgs[6] = " Create Totals."

mchoice=ACHOICE(1, 1, 2, 80, cues, msgs)

DO CASE
CASE mchoice = 1

THE_USUAL('ORD', .f., .f., .t.)
 CASE mchoice = 2

 THE_USUAL('STY')
 CASE mchoice = 3

 TABL_MENU()
 CASE mchoice = 4

TOTL_MENU()
 CASE mchoice = 5

RPT_MENU()
 CASE mchoice = 6

GET_MENU()
 OTHERWISE

Exit
ENDCASE
ENDDO
QUIT

Alphabetical List of Potential Clipper Issues

FoxPro: replace an ACHOICE() menu with FoxPro menu
The above Clipper example would appear like this if created via
the FoxPro Menu Builder. FoxPro would then generate the code
for this menu for you.

µ §

To hand code these menus, the program would look like this:

SET SYSMENU TO
SET SYSMENU AUTOMATIC
DEFINE PAD Orders OF _MSYSMENU PROMPT "Orders"
DEFINE PAD Styles OF _MSYSMENU PROMPT "Styles"
DEFINE PAD Tables OF _MSYSMENU PROMPT "Tables"
DEFINE PAD Reports OF _MSYSMENU PROMPT "Reports"
DEFINE PAD GetTotal OF _MSYSMENU PROMPT "Get

Totals"
DEFINE PAD mQuit OF _MSYSMENU PROMPT "Quit"
ON SELECTION PAD Orders OF _MSYSMENU do ordmenu
ON SELECTION PAD Styles OF _MSYSMENU do stymenu
ON SELECTION PAD Tables OF _MSYSMENU do tablmenu
ON SELECTION PAD Reports OF _MSYSMENU do rptmenu
ON SELECTION PAD GetTotal OF _MSYSMENU do totmenu
ON SELECTION PAD mQuit OF _MSYSMENU QUIT

Example 2: Clipper: ACHOICE() used to create a large picklist
select 0
use Vendor
DECLARE raTemp[RECCOUNT()]
FOR i = 1 TO RECCOUNT()

raTemp[i] = Accoun_nam
SKIP

NEXT
nChoice= ACHOICE(nTrow+1, nTcol+1, ;

nBrow-1, nBcol-1, raTemp)

Alphabetical List of Potential Clipper Issues

FoxPro popup with list array
DIMENSION Myarray[RECCOUNT()]
Select Vendor.Accoun_nam, recno() ;
from Profile into array Myarray
=Asort(Myarray)

@ 0,0 GET Vendor.Accoun_nam ;
 PICTURE "@&T" ;

FROM Myarray ;
SIZE 16,33 ;
DEFAULT 1 ;
WHEN check_prompt() ;
COLOR SCHEME 2

Example 3: Clipper: ACHOICE() used to create a short picklist
See Example Above

FoxPro popup with prompt fields
Select Selcodes
Set Filter to Popname="ContType"
Go Top
m.type="Telephone"

DEFINE WINDOW ContactTy FROM 8, 2 TO 16,21 ;
 TITLE " Contact Type " NOFLOAT ;
NOCLOSE NOMINIMIZE COLOR SCHEME 1

DEFINE POPUP Contact PROMPT FIELD pcue ;
SCROLL MARGIN MARK ""

ACTIVATE WINDOW ContactTy SAME
@ 0,0 GET m.type PICTURE "@&T" POPUP Contact ;
SIZE 7,18 DEFAULT " " COLOR SCHEME 2
READ CYCLE MODAL ;

VALID Finishit()

RELEASE WINDOW ContactTy
RELEASE POPUPS Contact

m.cont_type=pcue
SELECT Calls
SHOW GET m.cont_type ENABLE

FUNCTION FinishIt && Read level valid

Alphabetical List of Potential Clipper Issues

ADIR() XE "ADIR()"§
Level: 2
Clipper behavior: ADIR() takes up to five arrays as arguments.

FoxPro behavior: ADIR() requires and accepts only one array.

Action: Change the syntax of the ADIR() function.

Comment: FoxPro supports multiple dimensions in arrays, obviating the need
for several arrays.

Example: Clipper
DECLARE aName[10], aSize[10], aDate[10], aTime[10]
ADIR(aName,aSize,aDate,aTime)

FoxPro
=ADIR(Arin,"*.dbf")

AFIELDS() XE "AFIELDS()"§
Level: 2

Clipper behavior: AFIELDS() accepts up to four arrays as arguments.

FoxPro behavior: AFIELDS() requires and accepts only one array.

Action: Change the syntax of the AFIELDS() function.

Comment: FoxPro supports multiple dimensions in arrays, obviating the need
for several arrays.

Example: Clipper
DECLARE aNames[FCOUNT()],aTypes[FCOUNT()] ;
aWidths[FCOUNT()], aDec[FCOUNT()]
=AFIELDS(aNames, aTypes, aWidths, aDec)
fld_name=aNames
fld_type=aTypes
fld_width=aWidths
fld_dec=aDec

FoxPro
=AFIELDS(Myarray)
fld_name=Myarray(1,1)
fld_type=Myarray(2,1)
fld_width=Myarray(3,1)
fld_dec=Myarray(4,1)

AFILL() XE "AFILL()"§
Level: 2
Clipper behavior: AFILL() fills an array with a chosen value.

FoxPro behavior: Generates an error.

Action: Remove AFILL(). Simply set the array name (without any
subscript reference or brackets) equal to the desired value. Each
array element will be set to that value.

Alphabetical List of Potential Clipper Issues

Example: Clipper
AFILL(Myarray,"")

FoxPro
Myarray = ""

Alphabetical List of Potential Clipper Issues

ALTD() XE "ALTD()"§
Level: 2

Clipper behavior: ALTD() invokes the Clipper debugger.

FoxPro behavior: Generates an error.

Action: Remove ALTD(). Replace with code to suspend program
execution and invoke the Trace and/or Debug window.

Example: Clipper
Do WHILE !EOF()

ALTD()
ENDDO

FoxPro
Do WHILE !EOF()

ACTIVATE WINDOW Trace
ACTIVATE WINDOW Debug
SUSPEND

ENDDO

APPEND FROM FIELDS XE "APPEND FROM FIELDS"§
Level: 2

Clipper Behavior: The FIELDS clause precedes the FROM clause. In addition, a
WHILE clause is supported.

FoxPro Behavior: Generates an error if the FIELDS clause precedes the FROM
clause.

Action: Place the FROM clause before the FIELDS clause.

Example: Clipper
APPEND FIELDS Id, Firstname, Lastname FROM Myfile ;
FOR Id > 10 WHILE Lastname = "Smith"

FoxPro
APPEND FROM Myfile Fields Id, Firstname, Lastname ;
FOR Id > 10 AND Lastname = "Smith"

APPEND FROM WHILE XE "APPEND FROM WHILE"§
Level: 2

Clipper Behavior: Supports a WHILE clause.

FoxPro Behavior: Generates an error if a WHILE clause is included.

Action: Use a FOR clause instead of WHILE.

Example: Clipper
APPEND FIELDS Id, Firstname, Lastname FROM Myfile ;

FOR Id > 10 WHILE Lastname = "Smith"

FoxPro

Alphabetical List of Potential Clipper Issues

APPEND From Myfile Fields Id, Firstname, Lastname ;
FOR Id > 10 and LASTNAME = "Smith"

Alphabetical List of Potential Clipper Issues

BEGIN SEQUENCE...[BREAK]...END XE "BEGIN SEQUENCE..
[BREAK]...END"§
Level 1

Clipper behavior: Defines a code sequence of statements used for error handling.

FoxPro behavior: Generates an error.

Action: There are two approaches to adapting Clipper error handling code. The
recommended approach is to reengineer the error handling code using FoxPro's ON
ERROR command. A second, potentially much more complicated approach, is to mimic
BEGIN SEQUENCE...END with DO WHILE loops.

Example: See the section titled "Error handling"

BIN2I() XE "BIN2I()"§
Level: 1

Clipper behavior: Converts a character string formatted as a 16-bit signed integer to a
Clipper numeric value.

FoxPro behavior: Generates an error.

Action: Use the UDF of the same name in the procedure file
BINFUNC.PRG found in the \BINFUNC directory on the
Migration Kit disk. This file contains UDFs for each of the five
Clipper binary functions. Make these UDFs available to your
program and there will be no need to change the Clipper function
or code which relies on it.

BIN2L() XE "BIN2L()"§
Level: 1

Clipper behavior: Converts a character string formatted as a 32-bit signed integer to a
Clipper numeric value.

FoxPro behavior: Generates an error.

Action: Use the UDF of the same name in the procedure file
BINFUNC.PRG found in the \BINFUNC directory on the
Migration Kit disk. This file contains UDFs for each of the five
Clipper binary functions. Make these UDFs available to your
program and there will be no need to change the Clipper function
or code which relies on it.

BIN2W() XE "BIN2W()"§
Level: 1

Clipper behavior: Converts a character string formatted as a 16-bit unsigned integer
to a Clipper numeric value.

Alphabetical List of Potential Clipper Issues

FoxPro behavior: Generates an error.

Action: Use the UDF of the same name in the procedure file
BINFUNC.PRG found in the \BINFUNC directory on the
Migration Kit disk. This file contains UDFs for each of the five
Clipper binary functions. Make these UDFs available to your
program and there will be no need to change the Clipper function
or code which relies on it.

Alphabetical List of Potential Clipper Issues

CALL XE "CALL"§
Level: 1

Clipper behavior: Executes separately compiled routines and programs. Allows
passing of a list of expressions.

FoxPro behavior: Executes a binary file that has been placed in memory with the
LOAD command. CALL allows passing only a single character
string.

Clipper Summer '87 programs with the CALL command will
generate an error in FoxPro.

Action: Remove the function or recompile the routine to make it usable by
FoxPro.

Comment: Separately compiled and assembled routines for Clipper cannot be
run in FoxPro as is. They would have to recompiled and turned
into .BIN files or, using the FoxPro Library Construction Kit
(LCK), into a .PLB or .FLL. For more information about the
LCK, call 1-800-221-4679.

CANCEL XE "CANCEL"§
Level: 3

Clipper behavior: Returns to the operating system.

FoxPro behavior: Returns to the last calling program or to FoxPro.

Action: To return to the operating system, replace CANCEL with QUIT.

CLEAR XE "CLEAR"§
Level: 2

Clipper behavior: CLEAR supports a SCREEN clause which suppresses the
automatic clearing of GETs.

FoxPro behavior: A SCREEN clause generates an error.

Action: Remove the SCREEN clause. By default, CLEAR in FoxPro will
not clear GETs. To clear GETs, add the CLEAR GETS command.

Comment: In Clipper, Clear Screen is used to clear the screen, place the
cursor in the home position and clear any pending GETs. In
FoxPro, the CLEAR GETS or CLEAR ALL command is required
to clear the pending GETS. CLEAR alone, in FoxPro, clears the
screen. If you have used the SCREEN option to clear GETs in
your Clipper program, you must add a CLEAR GETS to your
program to get the same effect in FoxPro.

Example: Clipper
CLEAR

FoxPro

Alphabetical List of Potential Clipper Issues

CLEAR
CLEAR GETS && If your program expects GETs

to
&& be cleared by the CLEAR command

Alphabetical List of Potential Clipper Issues

COMMIT XE "COMMIT"§
Level: 2

Clipper behavior: COMMIT flushes all Clipper buffers to DOS and then performs a
solid-disk write.

FoxPro behavior: Generates an error.

Action: Replace with the equivalent FoxPro command FLUSH.

Example: Clipper
COMMIT

FoxPro
FLUSH

DBEDIT() XE "DBEDIT()"§
Level: 1

Clipper behavior: DBEDIT() displays and edits records from one or more work areas
using a browse-style table layout that executes within a defined
window area. DBEDIT() takes a custom keyboard handling
routine which modifies its behavior.

FoxPro behavior: Generates an error.

Action: Remove the DBEDIT function and replace it with a BROWSE
command.

Comment: Customize the browse to match the previous behavior of
DBEDIT(). You will not need to translate your keyboard handling
routine because FoxPro handles the keystrokes for you. You use
command line parameters to modify BROWSE behavior rather
than writing a function call.

BROWSE includes a lot of built-in functionality that you had to
write for yourself in Clipper. For example, in DBEDIT, to present
read-only data, it required creating a key handling function that
never allowed editing. In FoxPro, you simply issue the command
line argument NOMODIFY after the BROWSE statement.

Example: Clipper
USE Customer
DECLARE field_list[3]
field_list[1] = "Branch"
field_list[2] = "Salesman"
field_list[3] = "Amount"
DBEDIT(4, 0, 22, 79, FIELD_LIST, "UserFunc")

FoxPro
DEFINE WINDOW Tbrowse FROM 4, 0 to 22, 79
USE Customer
BROWSE FIELDS Branch, Salesman, Amount ;

Alphabetical List of Potential Clipper Issues

LAST NORMAL WINDOW TBROWSE;
TITLE "Customer"

Alphabetical List of Potential Clipper Issues

DBFILTER() XE "DBFILTER()"§
Level: 2

Clipper behavior: DBFILTER() returns as a character string the filter condition
defined in the current work area.

FoxPro behavior: Generates an error.

Action: Replace DBFILTER() with the identically behaved FoxPro
function FILTER().

Example: Clipper
filt_string=DBFILTER()

FoxPro
filt_string=FILTER()

DBRELATION() XE "DBRELATION()"§
Level: 2

Clipper behavior: DBRELATION() returns a character string containing a relation
expression.

FoxPro behavior: Generates an error.

Action: Replace DBRELATION() with its FoxPro equivalent,
RELATION().

Example: Clipper
rel_string=DBRELATION()

FoxPro
rel_string=RELATION()

Alphabetical List of Potential Clipper Issues

DBRSELECT() XE "DBRSELECT()"§
Level: 2

Clipper behavior: DBRSELECT() returns the work area number of a specified
relation.

FoxPro behavior: Generates an error.

Action: Create a user-defined function called DBRSELECT() that mimics
the behavior of its Clipper namesake. Include this function in your
program or place it in a procedure library.

The UDF should use the FoxPro function TARGET() to return the
proper value. Note you must be in the workarea in which you
wish to find the relation..

Example: Clipper
MyArea=DBRSELECT(1)

FoxPro
MyArea=DBRSELECT(1)

FUNCTION DBRSELECT
PARAMETERS relnum
PRIVATE i, malias, relnum
mAlias=TARGET(relnum)
i=0
If !EMPTY(malias)
FOR i= 1 TO 255

IF ALIAS(i) = malias
RETURN i

ENDIF
NEXT

IF i = 226
i =0

ENDIF
ENDIF
RETURN i

DESCEND() XE "DESCEND()"§
Level: 2

Clipper behavior: DESCEND() allows creation of descending order indexes and
perform seeks on descending indexes.

FoxPro behavior: Generates an error.

Action: Replace with the equivalent FoxPro command ASCENDING |
DESCENDING in the INDEX ON expression. ASCENDING and
DESCENDING can be toggled with the SET ORDER TO
command in FoxPro.

Alphabetical List of Potential Clipper Issues

Example: Clipper
INDEX ON DESCEND(Lastname) TO Lastname
SET INDEX TO Lastname
SEEK "Jones"

FoxPro
INDEX ON Lastname TO Lastname DESCENDING
SET INDEX TO Lastname
SET ORDER TO Tag Lastname Descend
SEEK "Jones"

Alphabetical List of Potential Clipper Issues

DOSERROR() XE "DOSERROR()"§
Level: 2

Clipper behavior: DOSERROR() returns the number of the last MS-DOS error.

FoxPro behavior: Generates an error.

Action: Modify error handling routines to use the ON ERROR command.

Comment: See the section titled "Error handling."

Because Clipper applications are compiled, most errors that occur
at runtime are critical errors requiring the user to be returned to the
operating system. DOSERROR() in Clipper is used to determine
what caused RUN commands to fail.

Example: Clipper
IF NETERR() .AND. model == "USE"

 RETURN .F.
ENDIF
BREAK_SEQ()

RETURN ERR_EXIT(ERR_LINE() + M->info + ", " ;
+ M->_1 + IF(DOSERROR() > 0, ", DOS error " ;
+ STR(DOSERROR()) , ""))

FoxPro
ON ERROR DO FP25EROR WITH ERROR(),; MESSAGE(), ;
MESSAGE(1), SYS(16), LINENO(), SYS(102), ;
SYS(100), SYS(101), LASTKEY(), ;
ALIAS(), SYS(18), SYS(5), SYS(12), SYS(6),;
SYS(2003), WONTOP(), ;
SYS(2011), SYS(2018), SET("CURSOR")

Alphabetical List of Potential Clipper Issues

ERRORLEVEL() XE "ERRORLEVEL()"§
Level: 2

Clipper behavior: ERRORLEVEL() returns the current MS-DOS error level setting.

FoxPro behavior: Generates an error.

Action: ERRORLEVEL() was primarily used with the Clipper utility,
SWITCH.EXE in situations where the programmer needed to run
multiple executables. You do not need to check the MS-DOS
error level when running the equivalent FoxPro command,
FOXSWAP. Once you replace uses of SWITCH.EXE with
FOXSWAP, this function can be removed.

EXTERNAL XE "EXTERNAL"§
Level: 2

Clipper behavior: EXTERNAL declares a symbol to the Clipper compiler.

FoxPro behavior: Generates an error.

Comment: In FoxPro, EXTERNAL is used to include files and to resolve
undefined references in a FoxPro project. EXTERNAL is used
only by the Project Manager and is ignored during program
execution. EXTERNAL in Clipper is a command to the compiler
that it will find references to the functions listed after EXTERNAL
at link time, rather than at compile time.

Action: Remove EXTERNAL references. FoxPro does not require the
programmer to create compiler directives.

Comment: The Project Manager handles resolving references in FoxPro.
When an applications is built using the Project Manager, it will
search for programs, functions and procedures which are called by
the application. If it can find them, it will add them to the
application. If it can't, it asks the developer to locate them.

Alphabetical List of Potential Clipper Issues

FREAD() XE "FREAD()"§
Level: 2

Clipper behavior: FREAD() returns the number of bytes read, and reads those bytes
into a memory variable which must be included as an argument.

FoxPro behavior: FREAD() returns the data actually read and accepts as an argument
the number of bytes to read.

Action: Change the syntax of FREAD().

Example: Clipper
block = 128

 buffer = SPACE(512)
 handle = FOPEN("Test.txt")

 IF FERROR() <> 0

bytes = FREAD(handle, @buffer, block)
IF bytes <> block

? "Error reading Test.txt"
 ENDIF
 ENDIF

FoxPro
*Note: TEST.TXT must exist in this example
STORE FOPEN('test.txt') TO file_handle
STORE FSEEK(file_handle, 0, 2) TO ifp_size
IF ifp_size <= 0 && Is File empty?

WAIT WINDOW 'This file is empty!' NOWAIT
ELSE

l_string = FREAD(file_handle, ifp_size)
ENDIF

FREADSTR() XE "FREADSTR()"§
Level: 2

Clipper behavior: FREADSTR() reads characters from a DOS file.

FoxPro behavior: Generates an error.

Action: Replace FREADSTR() with the equivalent FoxPro function
FREAD().

Example: Clipper
buffer = FREADSTR(handle,16)

FoxPro
buffer = FREAD(handle,16)

Alphabetical List of Potential Clipper Issues

HARDCR() XE "HARDCR()"§
Level: 2

Clipper behavior: HARDCR() replaces all soft carriage returns with hard carriage
returns.

FoxPro behavior: Generates an error.

Action: Remove the function HARDCR(). FoxPro supports word
wrapping in memo fields, so the function should not be necessary.

Comment: By default, word wrap is on in FoxPro. However, if you wish to
strictly emulate HARDCR(), use the STRTAN() function.

Example: Clipper
memo_var=HARDCR(memo_var)

FoxPro
*Note this code should not be necessary!

memo_var=STRTRAN(memo_var,CHR(141),CHR(13)+CHR(10))

I2BIN() XE "I2BIN()"§
Level: 2

Clipper behavior: I2BIN() converts an integer numeric data type to a two-byte
character containing a 16-bit binary integer.

FoxPro behavior: Generates an error.

Action: Use the UDF of the same name in the procedure file
BINFUNC.PRG found in the \BINFUNC directory on the
Migration Kit disk. This file contains UDFs for each of the five
Clipper binary functions. Make these UDFs available to your
program and there will be no need to change the Clipper function
or code which relies on it.

Alphabetical List of Potential Clipper Issues

IF XE "IF"§
Level: 2

Clipper behavior: An ELSEIF clause is supported.

FoxPro behavior: Inclusion of ELSEIF generates an error.

Action: Change the IF..ENDIF to a nested IF or CASE statement.

Comment: For long ELSEIF constructs, a CASE statement works best.

Example: Clipper
IF A

<do something>
ELSEIF B

<do something else>
ELSE

<do nothing>
ENDIF

FoxPro: nested if example
IF A

<do something>
ELSE

IF B
<do something else>

ELSE
<do nothing>

ENDIF
ENDIF

FoxPro: Case statement example
DO CASE

CASE A
<do something>

CASE B
<do something else>

CASE <N>
<do still another thing>

OTHERWISE
<do nothing>

ENDCASE

IF() XE "IF()"§
Level: 2

Clipper behavior: Performs an "immediate if."

FoxPro behavior: Generates an error.

Action: Replace IF() with the equivalent FoxPro function IIF().

Alphabetical List of Potential Clipper Issues

Example: Clipper
IF(Paid, SPACE(0), "Go get 'em")

FoxPro
IIF(Paid, SPACE(0), "Go get 'em")

Alphabetical List of Potential Clipper Issues

INDEXEXT() XE "INDEXEXT()"§
Level: 2

Clipper behavior: INDEXEXT() returns the type of index used in an application.

FoxPro behavior: Generates an error.

Action: Remove the function. Since FoxPro only uses its own index file
formats, there is no need to check for index type.

Comment: Note FoxPro does support .IDX indexes (a single-entry index
similar to .NTXs and .NDXs) as well as .CDX indexes which can
contain multiple tags. In addition, .CDXs are automatically
opened and closed by FoxPro when the database with which they
are associated is opened and closed.

INDEXKEY() XE "INDEXKEY()"§
Level: 2

Clipper behavior: INDEXKEY() returns the key expression of an index.

FoxPro behavior: Generates an error.

Action: Replace INDEXKEY() with equivalent FoxPro function SYS(14)
or use the KEY() function.

Example: Clipper
MyKey=INDEXKEY(1)

FoxPro
MyKey=KEY(1)
or
MyKey=SYS(14,1)

INDEXORD() XE "INDEXORD()"§
Level: 2

Clipper behavior: INDEXORD() returns the index position number of the controlling
index in the list of open index files.

FoxPro behavior: Generates an error.

Action: Replace INDEXORD() with the FoxPro function, SYS(21).

Comment: Note that SYS(21) returns a string.

Example: Clipper
pos_num=INDEXORD(1)

FoxPro
pos_num=VAL(SYS(21))

Alphabetical List of Potential Clipper Issues

INKEY() XE "INKEY()"§ , LASTKEY() XE "LASTKEY()"§ , SET FUNCTION XE
"SET FUNCTION"§
Level: 3
Clipper behavior: FoxPro and Clipper Summer '87, in many cases, map keys to

different values.

FoxPro behavior: These functions and commands work the same way as in Clipper,
but FoxPro key values may differ so unmodified Clipper programs
may not behave as expected in FoxPro.

Action: Consult Appendix G for a table comparing Clipper key values with
those of FoxPro and change your code accordingly.

ISPRINTER() XE "ISPRINTER()"§
Level: 2
Clipper behavior: ISPRINTER() determines if LPT1 is ready.

FoxPro behavior: Generates an error.

Action: Substitute the FoxPro function PRINTSTATUS().

Comment: It is not specific to LPT1, and will return the status of the active
print device.

Example: Clipper
? ISPRINTER()

FoxPro
? PRINTSTATUS()

L2BIN() XE "L2BIN()"§
Level: 1

Clipper behavior: L2BIN() converts a Clipper numeric data type to a four-byte
character string formatted as a 32-bit signed integer.

FoxPro behavior: Generates an error.

Action: Use the UDF of the same name in the procedure file
BINFUNC.PRG found in the \BINFUNC directory on the
Migration Kit disk. This file contains UDFs for each of the five
Clipper binary functions. Make these UDFs available to your
program and there will be no need to change the Clipper function
or code which relies on it.

LASTKEY()
See INKEY().

LASTREC() XE "LASTREC()"§
Level: 2

Clipper behavior: LASTREC() returns the number of physical records in the active
database.

FoxPro behavior: Generates an error.

Alphabetical List of Potential Clipper Issues

Action: Replace this function with RECCOUNT().

Example: Clipper
num_recs=LASTREC()

FoxPro
num_recs=RECCOUNT()

MEMOEDIT() XE "MEMOEDIT()"§
Level: 2

Clipper behavior: MEMOEDIT() allows editing of memo fields.

FoxPro behavior: Generates an error.

Action: Replace MEMOEDIT() with MODIFY MEMO.

Comment: FoxPro's built-in memo editor handles editing, so you don't have to
do all the programming that was necessary in Clipper. You can
simply replace instances of MEMOEDIT with MODIFY MEMO,
or mimic your Clipper program's behavior exactly, as in the
example.

You can do some fancy things with memo fields and browses, that
were hard if not impossible to do in Clipper. See example 2.

Also, memo fields can also be scattered with the FoxPro command
SCATTER MEMVAR MEMO, making indirect reads easier to
implement.

Example: Clipper
mNotes = MEMOEDIT(Notes,12,6,18,73,.T.)

FoxPro
DEFINE WINDOW TNotes FROM 12, 6 TO 18, 73
SET WINDOW OF MEMO TO Tnotes
MODIFY MEMO Notes

Example 2: FoxPro

*This sets up a BROWSE with a scrolling memo window
*side by side on the screen

DEFINE WINDOW Tbrow FROM 3,3 TO 15,15 ;
TITLE "Recent Calls"
DEFINE WINDOW Tcomment FROM 3,17 TO 15,78 ;
TITLE "Comments"
SELECT CALLS
SET FILTER TO Analyst_id=Anal_id AND ;
Contact_id=Rolodex->Contact_id
SET WINDOW OF MEMO TO TCOMMENTS
SET ORDER TO TAG CALLDATE
MODI MEMO COMMENTS NOWAIT

Alphabetical List of Potential Clipper Issues

*Activate Window Tbrow
GO TOP
BROWSE FIELDS CALLDate LAST NORMAL ;
NOMENU WINDOW TBROW
DEACTIVATE WINDOW Tbrow
DEACTIVATE WINDOW TComments
RELEASE WINDOWS TBROW, TComments
SET WINDOW OF MEMO TO Close Memo Comments
SET FILTER TO ANALYST_ID=Anal_id
SET ORDER TO TAG ACCOUN_NAM
SELECT (cAlias)

Alphabetical List of Potential Clipper Issues

MEMOLINE() XE "MEMOLINE()"§
Level: 2

Clipper behavior: MEMOLINE() extracts a formatted line of text from a character
expression or memo field.

FoxPro behavior: Generates an error.

Action: In FoxPro you would do this in two steps. You would use
ATLINE() or ATCLINE() to determine the line number, and then
use MLINE() to return to actual line.

Example: Clipper
mNotes=MEMOLINE(Notes,79,3)
*Notes is the Memo Field
*79 is the line length
*3 is the line no

FoxPro
SET MEMOWIDTH TO 79
mNotes=MLINE(Notes,3)

MEMOREAD() XE "MEMOREAD()"§
Level: 2

Clipper behavior: MEMOREAD() returns the contents of a text file as a character
string.

FoxPro behavior: Generates an error.

Action: Remove the command and replace with MODIFY FILE or
MODIFY MEMO.

Example: Clipper
MEMOWRIT("Afile.txt.,Memoedit(Memoread("Afile.txt")))

FoxPro
MODIFY FILE Afile.txt

Example 2: FoxPro

* Use MODIFY FILE to edit a temporary file
COPY FILE MyFile.txt TO MyTemp.txt
MODIFY FILE MyTemp.txt
IF NOT LASTKEY()==27

SET SAFETY OFF
COPY FILE MyTemp.txt TO MyFile.txt
SET SAFETY ON

ENDIF
ERASE MyTemp.txt

Alphabetical List of Potential Clipper Issues

MEMORY() XE "MEMORY()"§
Level: 2

Clipper behavior: MEMORY(0) returns the amount of available memory.

FoxPro behavior: Returns an error.

Action: Replace with either MEMORY(), SYS(12) or SYS(1001).

Comment: In FoxPro for MS-DOS, MEMORY() and SYS(12) return the
amount of memory below 640KB which is available to execute an
external program. SYS(1001) returns the amount of memory
available to the FoxPro memory manager including high memory
between 640K and 1MB that has been made available to DOS.

In FoxPro for Windows, MEMORY() always returns 640 and
SYS(12) returns 655,360.

Example: Clipper
mem_avail=MEMORY(0)

FoxPro
mem_avail=MEMORY()
or
mem_avail=SYS(12)
or
mem_avail=SYS(1001)

MEMOTRAN() XE "MEMOTRAN()"§
Level: 2

Clipper behavior: MEMOTRAN() replaces carriage return/line feed pairs.

FoxPro behavior: Generates an error.

Action: Remove the function. If desired, replace with STRTRAN().

Comment: By default, word wrap is on in FoxPro. However, if you wish to
strictly emulate MEMOTRAN(), use the STRTRAN() function.

Example: Clipper
*By default, MEMOTRAN replaces all hard carriage
*returns with semicolons, soft returns with spaces,
*and eliminates all line feeds
memo_var=MEMOTRAN(memo_var, "", "")

FoxPro
*Replace hard returns with semicolons
memo_var=STRTRAN(memo_var,CHR(13),";")
*Replace soft returns with spaces
memo_var=STRTRAN(memo_var,CHR(141)," ")
*Eliminate line feeds
memo_var=STRTRAN(memo_var,CHR(10))

Alphabetical List of Potential Clipper Issues

Alphabetical List of Potential Clipper Issues

MEMOWRIT() XE "MEMOWRIT()"§
Level: 2

Clipper behavior: Writes a character string to a specified disk file.

FoxPro behavior: Generates an error.

Action: Replace with COPY FILE or COPY MEMO.

Example: Clipper
Memowrit(MyVar)

FoxPro
REPLACE Test.notes WITH MyVar
COPY MEMO Test.notes TO Myfile.txt

MLCOUNT() XE "MLCOUNT()"§
Level: 2

Clipper behavior: MLCOUNT() counts the number of word-wrapped lines in a
character string or a memo field.

FoxPro behavior: Generates an error.

Action: Remove this function and replace it with the FoxPro equivalent
MEMLINES()..

Example: Clipper
mNO=MLCOUNT(NOTES)

FoxPro
mNO=MEMLINES(NOTES)

MLPOS() XE "MLPOS()"§
Level: 2

Clipper behavior: MLPOS() determines the position of a specified line number in a
character string or memo field.

FoxPro behavior: Generates an error.

Action: Replace this function with the FoxPro MLINE() function.

Comment: The system memory variable _MLINE stores the memo field
offset for the MLINE() function.

Example Clipper
string = MEMOREAD("Temp.txt")
? MLPOS(string, 40, 5)

Foxpro
SET MEMOWIDTH to 40
string = Mydbf.Notes
= MLINE(string,5,_mline)
? _MLINE

Alphabetical List of Potential Clipper Issues

Alphabetical List of Potential Clipper Issues

NETERR() XE "NETERR()"§
Level: 1

Clipper behavior: NETERR() determines if a USE, USE...EXCLUSIVE, or
APPEND BLANK has failed in a network environment.

FoxPro behavior: Generates an error.

Action: Remove this function call. You can trap errors resulting from
USE and USE... EXCLUSIVE or an APPEND BLANK with an
ON ERROR routine. See the section titled "Error handling."

NETNAME() XE "NETNAME()"§
Level: 1

Clipper behavior: NETNAME() returns the workstation identification.

FoxPro behavior: Generates an error.

Action: Replace NETNAME() with SYS(0).

Comment: SYS(0) returns the network computer name and number when
FoxPro is running on a network. A machine number and name
must first be assigned by the network software and the network
shell must be loaded. On Novell networks, add the following to
the system login script:

MACHINE="%USER_ID,%P_STATION,%LOGIN_NAME"

If FoxPro is not running on a network or a machine number and
name haven't been assigned by the network, SYS(0) returns a
string of 15 spaces, followed by a pound sign (#), space, and zero.

NEXTKEY() XE "NEXTKEY()"§
Level: 2

Clipper behavior: NEXTKEY() reads the next keystroke without removing it from
the keyboard buffer and returns an INKEY() value (or a 0 if the
buffer is empty).

FoxPro behavior: Generates an error.

Action: Remove this function and replace it with LASTKEY().

Comment: Note that key assignment values in Clipper and FoxPro may differ.
See Appendix G for a list of these assignments and change your
code if necessary.

Another FoxPro function that may be useful in this context is
CHRSAW() which returns TRUE if a character is present in the
keyboard buffer without affecting the buffer's contents.

Example: Clipper
IF NEXTKEY()=27

Alphabetical List of Potential Clipper Issues

RETURN .F.
ENDIF

FoxPro
IF LASTKEY()=27

RETURN .F.
ENDIF

Alphabetical List of Potential Clipper Issues

PCOUNT() XE "PCOUNT()"§
Level: 2

Clipper behavior: PCOUNT() returns the number of actual parameters that have been
passed to a procedure or user-defined function.

FoxPro behavior: Generates an error.

Action: Replace PCOUNT with the equivalent function PARAMETERS().

Example: Clipper
prm_count=PCOUNT()

FoxPro
prm_count=PARAMETERS()

PROCLINE() XE "PROCLINE()"§
Level: 2

Clipper behavior: PROCLINE() returns the source code line number from the
beginning of the current program file.

FoxPro behavior: Generates an error.

Action: Remove the function and replace it with the FoxPro equivalent
LINENO().

Example: Clipper
line_num=PROCLINE()

FoxPro
line_num=LINENO()

PROCNAME() XE "PROCNAME()"§
Level: 2

Clipper behavior: PROCNAME() returns the name of the current program or
procedure.

FoxPro behavior: Generates an error.

Action: Replace with the FoxPro equivalent PROGRAM().

Example: Clipper
prog_name=PROCNAME()

FoxPro
prog_name=PROGRAM()

Alphabetical List of Potential Clipper Issues

READEXIT() XE "READEXIT()"§
Level: 2

Clipper behavior: Toggles the up arrow and down arrow keys as READ exit keys.

FoxPro behavior: Generates an error.

Action: This command is unnecessary in FoxPro. If you want the up and
down arrow keys to serve as exit keys in a read, create ON KEY
LABEL commands to exit the read.

Example: Clipper
READEXIT(.T.)

FoxPro
ON KEY LABEL UPARROW CLEAR READ
ON KEY LABEL DNARROW CLEAR READ

READINSERT() XE "READINSERT()"§
Level: 2

Clipper behavior: Reports the current insert mode setting for READ and
MEMOEDIT().

FoxPro behavior: Generates an error.

Action: Replace with INSMODE().

Example: Clipper
READINSERT(.T.) &&Turns on insert

FoxPro
= INSMODE(.T.) &&turns on insert

Alphabetical List of Potential Clipper Issues

READVAR() XE "READVAR()"§
Level: 3

Clipper behavior: READVAR() returns the name of the current GET or MENU
variable.

FoxPro behavior: Generates an error.

Action: For GETs, replace READVAR() with VARREAD(). For menus,
replace READVAR() with either PROMPT() or BAR().

Comment: Clipper uses READVAR() primarily for debugging and as such is
not appropriate in FoxPro. Use the Trace and Debug windows
instead.

Example: Clipper
FUNCTION MyValid
xvar=READVAR()
xvalue=&READVAR()
SELECT Pcodes
SET ORDER TO &xvar
SEEK xvalue
IF !FOUND()

RETURN .F.
ELSE

RETURN .T.
ENDIF

FoxPro
FUNCTION MyValid
xvar=VARREAD()
xvalue=&READVAR()
SELECT Pcodes
SET ORDER TO (xvar)
SEEK xvalue
IF !FOUND()

RETURN .F.
ELSE

RETURN .T.
ENDIF

Alphabetical List of Potential Clipper Issues

RESTSCREEN() XE "RESTSCREEN()"§
Level: 2

Clipper behavior: RESTSCREEN() displays a previously saved screen region.

FoxPro behavior: Generates an error.

Action: Replace RESTSCREEN() with the equivalent FoxPro command
RESTORE SCREEN.

Comment: FoxPro has a sophisticated windowing manager that provides a
more elegant mechanism for handling windows than saving and
restoring screens. Commands such as DEFINE WINDOW,
ACTIVATE WINDOW, SHOW WINDOW, and HIDE
WINDOW provide an excellent alternative to a series of screen
saves and restores.

Example: Clipper
RESTSCREEN(0, 0, 24, 29, OldScreen)

FoxPro
RESTORE SCREEN FROM MyScreen

SAVESCREEN() XE "SAVESCREEN()"§
Level: 2

Clipper behavior: SAVESCREEN() saves a specified screen area to be redisplayed
later.

FoxPro behavior: Generates an error.

Action: Replace SAVESCREEN() with the equivalent FoxPro command,
SAVE SCREEN.

Example: Clipper
OldScreen = SAVESCREEN(0,0,24,79)

FoxPro
SAVE SCREEN TO MyScreen

SCROLL() XE "SCROLL()"§
Level: 2
Clipper behavior: SCROLL() designates a section of the screen to scroll up, down, or

blank out.

FoxPro behavior: Generates an error.

Action: Replace with the FoxPro command SCROLL.

Example: Clipper
SCROLL(4, 5, 21, 74, 0)

FoxPro
SCROLL 4, 5, 21, 74, 0

Alphabetical List of Potential Clipper Issues

SET CURSOR XE "SET CURSOR"§
Level: 3

Clipper behavior: SET CURSOR OFF turns off the cursor during screen painting.

FoxPro behavior: SET CURSOR OFF prevents the cursor from being displayed
during a pending @ ... GET, @ ... EDIT, WAIT or INKEY()
statement.

Action: No change required.

Comment: You may wish to remove SET CURSOR OFF commands. By
default, FoxPro doesn't display the cursor while painting the
screen. However, if SET CURSOR is OFF, the cursor will be
suppressed during pending GETs, EDITS, and WAITs.

SET FUNCTION
See INKEY().

SET KEY XE "SET KEY"§
Level: 2

Clipper behavior: SET KEY executes a procedure when a designated key is pressed.
The expression in SET KEY is the INKEY() value for a key
stroke.

FoxPro behavior: Generates an error.

Action: Replace SET KEY with the ON KEY LABEL command. Change
the value of the expression specified in SET KEY to the equivalent
FoxPro key label.

Comment: If there is no key label equivalent to the value used in SET KEY,
use the FoxPro command ON KEY which, like SET KEY, takes a
numeric argument (though the number for a particular key may be
different). However, this command is included for backward
compatibility only.

See Appendix G for a table which shows the key value
assignments in FoxPro and Clipper.

Example: Clipper
SET KEY -1 TO my_prog && -1 is for the F2 key

FoxPro
ON KEY LABEL F2 DO my_prog && Recommended
or
ON KEY = 316 DO my_prog && 316 is for the F2 key

Alphabetical List of Potential Clipper Issues

SET RELATION XE "SET RELATION"§
Level: 2

Clipper behavior: The TO keyword is repeated for each relation created in a single
SET RELATION command.

FoxPro behavior: The TO keyword is only used once, otherwise an error is
generated.

Action: Remove all the TO keywords except the first one.

Comment: This is a very minor difference in syntax. These commands
operate identically otherwise.

Example: Clipper
SET RELATION TO cust INTO invoice, TO state INTO state

FoxPro
SET RELATION TO cust INTO invoice, state INTO state

SET SOFTSEEK XE "SET SOFTSEEK"§
Level: 2

Clipper behavior: SET SOFTSEEK toggles relative seeking on or off. A
SOFTSEEK searches for the next higher key value when a SEEK
fails.

FoxPro behavior: Generates an error.

Action: Remove the command. Replace it with the FoxPro equivalent
SET NEAR.

Example: Clipper
SET SOFTSEEK ON

FoxPro
SET NEAR ON

SET WRAP XE "SET WRAP"§
Level: 2

Clipper behavior: SET WRAP toggles wrapping in menus.

FoxPro behavior: Generates an error.

Action: Remove this command. It is unnecessary in FoxPro.

Comment: FoxPro behaves as if SET WRAP is set on at all times.

Alphabetical List of Potential Clipper Issues

SETCANCEL() XE "SETCANCEL()"§
Level: 2

Clipper behavior: SETCANCEL() toggles program termination with Alt-C, on or
off.

FoxPro behavior: Generates an error.

Action: Remove the command. It is unnecessary in FoxPro. Most FoxPro
programmers will either use ON ESCAPE or set a hotkey to bail out during application
development.

Example: Clipper
SETCANCEL(.T.) &&Turns ALTC on for termination.

FoxPro
ON KEY LABEL F12 SUSPEND
Or
SET ESCAPE ON
Or
ON ESCAPE SUSPEND

SETCOLOR() XE "SETCOLOR()"§
Level: 2

Clipper behavior: SETCOLOR() returns the current color setting or allows you to
define a new color setting.

FoxPro behavior: Generates an error.

Action: Remove the command. Recoding using FoxPro color schemes is
recommended. However, you may also substitute the
SET('COLOR') function to get current color settings and use the
SET COLOR TO command to define a new color setting.

Comment: See the section titled "Colors" for information on using FoxPro
color schemes.

Example: Clipper
cur_col=SETCOLOR()
new_col=SETCOLOR("W+/B,W+/BG,N")

FoxPro
cur_col=SET('COLOR')
SET COLOR TO "W+/B,W+/BG,N"

SETPRC() XE "SETPRC()"§

Level: 2

Clipper behavior: SETPRC() sets the value of the internal PROW() and PCOL().

FoxPro behavior: Generates an error.

Alphabetical List of Potential Clipper Issues

Action: Remove the function. Set the values of PROW() and PCOL()
directly using the FoxPro system memory variables.

Example: Clipper
SETPRC(0,0) && Resets row & column back to beginning

FoxPro
_LMARGIN=0
Or
EJECT

TEXT XE "TEXT"§
Level: 2

Clipper behavior: TEXT supports a TO PRINT and TO FILE option.

FoxPro behavior: The TO PRINT and TO FILE options generate errors.

Action: Remove TO PRINT and/or TO FILE. In FoxPro, you would SET
CONSOLE OFF, and SET PRINTER TO to get the same effect.

Example: Clipper
TEXT TO PRINT
<Text to print on screen and to printer>
ENDTEXT

FoxPro
SET CONSOLE OFF
SET PRINTER TO LPT1 && or File MyFile.txt
TEXT
<Text to print to printer>
ENDTEXT

TONE() XE "TONE()"§
Level: 2

Clipper behavior: TONE() sounds a speaker tone for a specified frequency and
duration.

FoxPro behavior: Generates an error.

Action: Replace with the SET BELL TO and ?? commands.

Example: Clipper
TONE(150,18) && sounds bell for one second

FoxPro
SET BELL TO 150, 1&& sounds bell for one second
?? CHR(7)

Alphabetical List of Potential Clipper Issues

TYPE() XE "TYPE()"§
Level: 3

Clipper behavior: TYPE() can, among other values, return arrray, error syntactical
and error indeterminate.

FoxPro behavior: TYPE() behaves like it does in Clipper Summer '87 except it does
not return arrayXE "array"§, error syntactical and error
indeterminate.

Action: If you need to test for an array, replace the TYPE() function with
the ISARRAY() function below created by Malcolm Rubel.

Example: Clipper
TYPE('array_1')

FoxPro
=ISARRAY('array_1')

* Code sample from FoxPro 2.0 Power Tools
* by Malcolm Rubel, Performance Dynamics Associates
* Bantam Computer Books. All rights reserved.
* Copyright (c) 1989, 90, 91
* Function returns TRUE if named variable is an array.

FUNCTION isarray
PARAMETERS var_name
PRIVATE var_name
IF type(var_name + '[1]') = 'U' .and. ;
 type(var_name + '[1,1]') = 'U'
 RETURN(.F.)
ELSE
 RETURN(.T.)
ENDIF

WORD() XE "WORD()"§
Level: 2

Clipper behavior: WORD() converts numeric parameters of the CALL command
from type DOUBLE to type INT.

FoxPro behavior: Generates an error.

Action: Remove the function. This transformation is not necessary in
FoxPro.

Using the Program Analyzer

What the Program Analyzer does
The Program Analyzer loads each selected program into a FoxPro memo field and then
searches the code for dBASE IV or Clipper Summer '87 commands and functions that
are not supported or might behave differently in FoxPro. (Your original files remain
untouched on the disk.) The Program Analyzer creates a database of possible problem
areas and their location in your program files (now stored in memo fields). After the
Program Analyzer creates this database, you can select an issue and the Program
Analyzer will open the memo field with the appropriate .PRG file in the text editor and
place the cursor at the line of the potential problem.

Note that the Analyzer might flag code that will run properly in FoxPro. The Analyzer
searches only for text strings--it does not check syntax or execute code. Some commands
and functions are dependent on other parts of a program, and the Analyzer isn't designed
to examine these dependencies.

The Program Analyzer doesn't modify files in any way. It only loads them into memo
fields.

New Analysis
To analyze your programs, you must first have the Migration Tools software installed.
(See the section titled "Migration Tools," above, for installation instructions.) Then DO
MIGRATE.APP, either by choosing the Do command from the Program menu or typing
DO MIGRATE.APP in the Command window.

A new pad called Migration Tools is added to the FoxPro menus. Choose New Analysis
from the Migration Tools menu. This brings up a dialog box like the File Converter
dialog box. Now, however, only .PRG files are displayed.

To select a file for analysis, either double-click on the filename, or highlight it and press
the ENTER key. Selected files will have an asterisk placed next to the filename on the
left. You can select all the files in a directory for analysis with the Select All button, or
start over by clicking the Clear All button. To cancel selection of a single file, either
double-click on the filename, or highlight it and press the ENTER key.

µ §
To create a new analysis, select .PRG files and then click the Process button.

Using the Program Analyzer

To process files in another directory, click the Directory button and move to a new
directory. To analyze files in multiple directories, first select and convert the files in one
directory, and then select and convert files in another directory. Alternatively, you could
place all the files in one directory.

Processing files
When you have finished selecting files, click the Process button. The Program Analyzer
goes to work. First, all selected PRGs are copied into FoxPro memo fields. Then
FoxPro searches the stored .PRGs for commands and functions that might cause
problems when run in FoxPro. This will take some time depending on the number of
files you process and the number of issues the Program Analyzer finds.

Note the Program Analyzer searches for full commands and abbreviated commands (e.g.
activate menu and acti menu) but not partially abbreviated commands (e.g. activ menu).

Disk space requirements
By reading .PRGs into memo fields, the Program Analyzer effectively creates duplicate
copies of your source files. Disk space requirements are roughly 1.2 times the size of all
source files selected for analysis.

Settings
The Migration Kit supports both dBASE IV and Clipper Summer '87. If you have not
selected the kind of program you wish to analyze in the Settings dialog, you will be
prompted to choose either dBASE IV 1.5 or earlier, dBASE IV 2.0 or earlier, or Clipper
Summer '87.

µ §
If you have not yet made a choice of the kind of application you are migrating, the Migration Tools will

prompt you for a choice. The same dialog is available by choosing "Settings..." from the Migration Tools
menu.

You may also bring up this dialog by choosing "Settings..." from the Migration Tools
menu. Choose the kind of application you're migrating and a sensitivity level, then click
OK.

Using the Program Analyzer

Sensitivity levels

The Analyzer divides possible problem areas into four categories:

· Level XE "Level "§1 commands and functions are those not supported in
FoxPro. These commands and functions must be removed or replaced with
FoxPro equivalents.

· Level 2 commands and functions will generate errors in FoxPro but often have
very close FoxPro equivalents.

· Level 3 commands and functions will not generate errors but behave differently
enough to merit attention.

· Level 4 commands and functions will not generate errors and will rarely cause a
problem in your program. Searching for Level 4 issues flags many lines of code
which will usually work fine.

By default, the Program Analyzer searches for Level 1, 2, and 3 issues. Note that
setting the sensitivity in this dialog box is not the same as applying a filter based
on sensitivity in the Program Analyzer window, discussed below.

All setup options are saved between sessions, and the previous settings are restored in
subsequent sessions.

Open Analysis
This menu option allows you to return to previously created analyses. These are stored
as database files with the extension .EXP. Note that new files cannot be added to
analyses after they have been created.

The Program Analyzer interface
The Program Analyzer creates a database with a record for each instance of a potential
problem. It stores the name of the command or function flagged and its location (line
number) in the program file. This information is presented in the Program Analyzer.

µ §
The Program Analyzer displays a list of possible issues in your programs.

The upper left pane shows all the commands and functions that might be a problem if run
in FoxPro. The leftmost column, beneath the heading "Level," shows the level of the
command or function, 1, 2, 3, or 4. (See Filtering and sorting below for a description of
these levels.)

The next column, under the "Program" heading, shows the line number and name of the
program in which a possible problem was found. Finally, the name of the command or
function is displayed beneath the heading "Issue."

Selecting an issue in the left pane brings up a corresponding explanation of that issue in
the pane on the right side, under the "Overview" heading. This overview explains the
behavior of the command or function in dBASE or Clipper Summer '87 (depending on

Using the Program Analyzer

the choice you make in the Settings dialog discussed above), the behavior in FoxPro, and
the way to address problems that result from any differences.

The information in the Overview window is the same as that provided in this document
in the sections titled with the alphabetical list of potential issues except that no examples
are included in the Overview window.

Filtering and SortingXE "Order"§XE "View"§XE "Sensitivity"§
To help you resolve possible problems systematically, the Program Analyzer lets you sort
issues in several ways: by program name, by issue (the name of the commands and
functions), and by sensitivity (or level). The radio buttons under the heading "Order"
determine the sort order.

You can also apply a filter to the issues and look only at the issues at each level: 1, 2, 3,
or 4. Choose a radio button under the SensitivityXE "Sensitivity"§ heading to apply
these filters. To filter issues based on whether they've been edited or not, select a radio
button option beneath the "View" heading. (See the next section to learn about editing
program files.)

Jumping to potential problem areas from the Program Analyzer
To go to the actual line where a problem might exist, double-click on the issue you want
to address, or highlight the issue and press ENTER. The Program Analyzer
automatically launches the program editor with the appropriate file and positions the
cursor at the line number of the potential problem.

If you have made changes, pressing Ctrl+W or clicking the system box in the upper left
corner of the window will save the changes back to the source code, and the Program
Analyzer will reappear. Next to the number indicating the level of the issue, an asterisk
will appear to indicate that the problem has been addressed.

To go back to the Program Analyzer without marking an issue as resolved and without
saving any changes, press the ESC key while in the program editor.

If you have added or removed lines of code, future jumps from the Program Analyzer
may not position the cursor at the exact line of the problem since line numbers will have
changed since the analysis was created. Usually it will be only a few lines away, but if
necessary, choose Find from the Edit menu and type in the name of the command or
function and FoxPro will find it for you.

µ §
Double-clicking on an issue in the left pane launches the text editor and moves the cursor to the line

appropriate line number.

Using your own XE "Text editor, using your own"§text editor
If you want to use your own text editor, you won't be able to jump to problems using the
Program Analyzer in the manner described in the preceding section. Instead, print a
report of all issues, and choose Close Tools from the Migration Tools menu to return to

Using the Program Analyzer

FoxPro. Now you may launch your editor and go through the issues found in the report.
dBASE users should find the FoxPro editor richer in features and significantly faster than
the dBASE editor. In addition, most edits will be relatively minor, reducing the need for
an external editor.

If you use your own editor, you will be editing the files directly on disk as opposed to the
programs loaded into FoxPro memo fields. Do not export program files from the
Program Analyzer as these might overwrite the files you have edited!

HelpXE "Help"§
For help on using the Program Analyzer, click the Help button or press the F1 key. To
access regular FoxPro help on FoxPro commands and functions, click the Fox Help
button. The Program Analyzer will attempt to find a FoxPro Help topic related to the
issue currently highlighted in the lefthand pane.

Using the Program Analyzer

ReportsXE "Reports, Program Analyzer"§
The Program Analyzer will create reports that can be viewed on-screen or printed. You
can view the database of potential issues in any of three ways:

· Sorted by program filename and then by issue

· Sorted by program filename and then by line number

· Sorted by issue

These reports are designed to help you pinpoint aspects of your application that
might require modifications. Additionally, the reports make it possible to
utilize your own text-editing environment or other tools to perform global
search-and-replace operations. You can create your own reports based on an
analysis file (.EXP) using the FoxPro Report Writer. Note that any filters set
using the Program Analyzer (such as viewing only edited issues) will affect
report output.

Viewing the issues databaseXE "View Rules"§
To quickly find an explanation of how a particular command or function works in
FoxPro and dBASE or Clipper, you can use the view the issues database. From the
Migration Tools menu, choose View Issues. This brings up a window with all the
dBASE IV or Clipper Summer '87 commands and functions that might cause a problem
in FoxPro. The Program Analyzer searches program files for these key words. You can
apply a filter to view only commands or only functions.

Selecting a particular command or function displays a corresponding explanation of how
it behaves in dBASE or Clipper and in FoxPro. This is the same information displayed
in the Program Analyzer and the same as the information in the section with the
alphabetical list of potential issues.

After addressing the issues in the Program Analyzer list
After you have checked all the issues found by the Program Analyzer and made any
changes necessary, you can export your programs back to regular .PRG files.

For analysis purposes, the Program Analyzer reads all selected .PRG files into individual
memo fields. The Export .PRGXE " Export .PRG"§s bar on the Migration Tools menu
allows you to write your programs back to regular .PRG files.

First, be sure you have an analysis open. Then click the Export .PRGs button.

Select the .PRGs you wish to export by double-clicking on the filename, or highlighting
the filename and pressing ENTER. Use the directory button in the Export dialog box to
select the output destination of the .PRG files. It is usually best to export .PRG files to a
directory other than the one from which they were read. This will protect your original
source code files. When you have selected the files and destination, click the Export
button. If a file of the same name already exists, you will be warned that exporting will

Using the Program Analyzer

overwrite that file.

Make sure you really want to overwrite files before doing so! Overwritten files are
lost permanently.

If you used your own editor to directly modify program files, do not export .PRGs.
The .PRGs stored in the memo files will have none of the changes you made and
could overwrite the files you did modify.

Note that any .PRGs that are exported remain in the analysis database and can be
exported again. When you are finished using the Migration Tools, you can delete all
files with the name of the analysis. There will be four files with the
extensions .CDX, .FPT, .EXP, and .PXP. (These last two extensions are not regular
FoxPro file extensions.) Be careful deleting files!

Using the Program Analyzer

FoxPro Projects
You can run .PRGs directly by using the DO command as in dBASE. However, you
should take advantage of the FoxPro Project Manager which keeps track of all the files in
an application and will build a single application file. To use the Project Manager, create
a project and add the name of the calling program to the project. Build your application
and the Project Manager will take care of bringing in your other program files.

When building an application, if the FoxPro compiler encounters errors while compiling,
it creates a file with the same name as the project file, but with a file extension of .err.
That file will tell you if there is anything the Analyzer missed.

To create executable files, you will need the FoxPro Distribution Kit for either MS-DOS
or Windows. With the Distribution Kit installed, the Project Manager becomes capable
of creating stand-alone executable files.

Appendices

Appendix A: Effects of the SET COMPATIBLE command
Note that SET COMPATIBLE is off by default in FoxPro.

Command or Function SET
COMPATIBL

E

Effect

All file-processing
commands with a drive
reference

DB4 ON If a FoxPro path is set and a command
specifies a drive, then only the drive
specified in the command will be searched
when looking for a file.

OFF If a path is set and the command specifies a
drive, the specified drive is searched, then
the FoxPro path.

An example:

SET PATH TO D:\TESTDIR

DO C:TEST

In this example, TEST is a program file located in D:\TESTDIR. It will not be found and
executed if SET COMPATIBLE is DB4, because only the specified drive is searched. If
SET COMPATIBLE is OFF, however, the file will be found and executed because the
FoxPro path will also be searched.

PARAMETERs passed by
reference

DB4 ON PARAMETERs that are passed by reference
(SET UDFPARMS TO REFERENCE)
remain available to the called procedure.

OFF PARAMETERs that are passed by reference
(SET UDFPARMS TO REFERENCE)
become "hidden" to the called procedure.

@...GET...RANGE

DB4 ON The RANGE is always checked.

OFF The RANGE is only checked if data has
been changed.

@...SAY

(Special Characters)

DB4 ON All special characters are output except
CHR(7), which rings the bell.

OFF All special characters are output including
CHR(7), which does not ring the bell.

@...SAY

(SCREEN SCROLL)

DB4 ON Output that extends beyond the bottom right
corner of the screen will be displayed,
causing the screen to scroll upward.

OFF Output that extends beyond the end of the
screen is truncated.

Appendix A: Effects of the dBASE IV SET COMPATIBLE Command

Command or Function SET
COMPATIBL

E

Effect

@...SAY

(SET STATUS ON)

DB4 ON Output can overwrite the status bar. Text
that extends beyond the end of the status
display wraps above the status bar, scrolling
upward from that point.

OFF Output cannot overwrite the status bar. Text
that extends beyond the end of the screen is
truncated.

@...SAY

(w/PICTURE)

DB4 ON When numeric data is displayed with the
PICTURE clause, the right-most digit in the
PICTURE clause is rounded.

OFF When data is displayed using a PICTURE
clause, the value is not rounded -- extra
digits are truncated.

ACTIVATE SCREEN

and

ACTIVATE WINDOW

ON When a screen or window is activated, the
cursor position is set to 00,00.

OFF The cursor remains at its current position.

ON The default extension for the file will

Appendix A: Effects of the dBASE IV SET COMPATIBLE Command

APPEND MEMO be .TXT if one is not specified.

OFF There is no default extension and none is
used if one is not specified.

GO|GOTO

(with TALK ON)

ON FoxPro outputs a message that identifies the
current work area alias and the record
number positioned to.

OFF FoxPro does not output the message
indicating position.

MENUs

and

POPUPs

ON Popups are placed in the active window and,
once activated, the cursor is positioned on an
option in the popup. If the popup is placed
on row zero, the entire row is used as part of
the menu bar.

OFF Popups are placed in their own windows and
the cursor is not moved from its position in
the active output window. If placed on row
zero, only the pads of the menu are treated
as part of the menu bar.

Appendix A: Effects of the dBASE IV SET COMPATIBLE Command

Command or Function SET
COMPATIBL

E

Effect

PLAY MACRO

ON When a keyboard macro in the range of A-Z
is played (e.g., PLAY MACRO A), an
implicit ALT+F10 is added before the letter
and FoxPro executes the macro associated
with the ALT+F10+letter combination, e.g.,
ALT+F10+A.

With F1 through F9 keyboard macros, an
implicit ALT is added before the Function
key and FoxPro executes the macro
associated with the ALT+Fkey combination
(e.g., ALT+F1).

OFF FoxPro executes the macro associated with
the given name without adding any implicit
keystrokes. See the System Menu chapter in
the FoxPro Interface Guide for a list of
definable macro key combinations.

READ

(with a VALID clause on
a GET)

ON If the ESC key is pressed when positioned in
a field that has a VALID clause, validation
will be performed. If the input is invalid, the
"Invalid Input" alert is displayed.

OFF Validation is not performed if Escape is
pressed, and if validation is performed
(Escape is not pressed) the "Invalid Input"
alert is not displayed if the input is invalid.

READ and

TRANSFORM

ON The value of the variable or expression will
be rounded to the number of decimal places
specified in the PICTURE clause.

Appendix A: Effects of the dBASE IV SET COMPATIBLE Command

(with a numeric
PICTURE clause)

OFF The value of the variable or expression will
be truncated to fit the PICTURE clause.

READs

(nested)

ON When returning to a higher level READ,
FoxPro does an implicit CLEAR GETS on
the lower level before returning.

OFF When returning to a higher level READ,
pending GETs in the lower level will remain
pending.

RUN/!

ON The cursor moves to row 24, column 0. All
subsequent output begins displaying from
this point.

OFF The cursor remains at its current position.
All subsequent output begins displaying
from this point.

Appendix A: Effects of the dBASE IV SET COMPATIBLE Command

Command or Function SET
COMPATIBL

E

Effect

RUN/!

(with STATUS ON)

ON Output from the program that was RUN is
scrolled up three lines before control returns
to FoxPro.

OFF Output from the program that was RUN is
scrolled up two lines before control returns
to FoxPro.

SET COLOR TO

ON If SET STATUS is ON, the last line on the
screen (n) and the second from last line (n-2)
are redrawn with the new SET COLOR TO
colors.

OFF If SET STATUS is ON, the last three lines
on the screen (n, n-1, and n-2) are all
redrawn with the new colors.

SET FIELDS

ON Using SET FIELDS TO without a field list
or the ALL option will SET FIELDS OFF.
This also removes all fields from the fields
list.

OFF Using SET FIELDS TO without a field list
or the ALL option will SET FIELDS TO the
null string (all fields are removed from the
fields list).

Appendix A: Effects of the dBASE IV SET COMPATIBLE Command

SET MESSAGE

ON The character expression specified in this
command will appear immediately on the
last line of the screen and the text will be
output in a different color.

OFF The character expression is only displayed
when you SET STATUS ON, and both the
character expression and the line it's on are
displayed in a different color.

SET PRINT TO <file>

ON The output file is given a .PRT file
extension, unless another extension is
explicitly given.

OFF The output file is given a file extension only
when one is explicitly given.

STORE

ON STORE cannot be used to initialize all
elements of an array.

OFF STORE may be used to initialize all
elements of an array to a specified value.

Appendix A: Effects of the dBASE IV SET COMPATIBLE Command

Command or Function SET
COMPATIBL

E

Effect

SUM

ON The number specified in SET DECIMALS is
the number of decimal places that will be
output in the SUM.

OFF The number of decimal places specified in
the database structure for the field being
summed determines the number of decimal
places that can be output.

INKEY()

and

LASTKEY()

ON HOME and SHIFT+HOME key combination
will return the value 26 and the
CTRL+LEFT returns a value of 1.

OFF Refer to the table under INKEY() in the
Commands & Functions manual for values.

LIKE()

ON The pattern and target are both trimmed of
trailing blanks before the comparison is
made.

OFF the pattern and target are used "as is" and
trailing blanks will be significant.

SELECT()

ON SELECT() returns the number of the highest
unused work area.

Appendix A: Effects of the dBASE IV SET COMPATIBLE Command

OFF SELECT() returns the number of the
currently selected work area.

SYS(2001,'COLOR')

ON The value returned is the current setting of
SET COLOR ON | OFF.

OFF The value returned is the SET COLOR TO
color pairs.

Appendix B: dBASE file types and what to do with them
FoxPro doesn't need all the files dBASE creates in order to run your application. Below
is a list of all dBASE files, a description of their function, what to do with them, and
where to look for assistance on using them in FoxPro.

File Description What to do See

Database Files Using dBASE
database, memo,
and index files

.DBF Database file Used by FoxPro. No action
required.

.DBT Memo file Automatically converted (and
erased) by FoxPro when associated
database is used.

.MDX Multiple tag
index file

Ignored by FoxPro. FoxPro .CDX
indexes are automatically created
when the associated database is used
in FoxPro.

.NDX Single
expression
index file

Ignored by FoxPro.
Equivalent .IDX index is created if
the .NDX is used in FoxPro.

Format Files

.SCR Screen form
object

Convert to FoxPro screen format
(.SCX) using File Converter.

Converting Screens

.FMT Generated
format file

Used by FoxPro. (Modification
might be needed.)

Modifying Format
Files

.FMO Compiled
format file

Not required in FoxPro.

Reports

.FRM Report form
object

Convert to FoxPro report format
(.FRX) using File Converter.

Converting Reports

.FRG Generated
report
program

Not necessary if you convert
the .FRM from which the .FRG is
generated. Otherwise, run the .FRG
in FoxPro.

Converting Reports

.FRO Compiled
report
program

Not required in FoxPro.

Queries

.QBE Program
generated by
dBASE QBE

Run in FoxPro after minor
modifications.

Using dBASE
Queries

.QBO Compiled
QBE
program

Not required in FoxPro.

Appendix B: dBASE File Types

Labels

.LBL Label form
object

Convert to FoxPro label form object
(.LBX) using File Converter.

Converting Labels

.LBG Generated
label
program

Not necessary if you convert
the .LBL file from which the .LBG
was generated. Otherwise, run
the .LBG in FoxPro.

.LBO Compiled
label
program

Not required in FoxPro.

Programs

.PRG Program
source code

Migrate to FoxPro using Program
Analyzer.

Migrating .PRG
files

.DBO Compiled
program

Not required in FoxPro.

.PRS SQL
program
source code

Rewrite in FoxPro.

Applications Generated by ApplicatonsGenerator Note on
Applications
Generator
applications

Appendix B: dBASE File Types

.APP Main
application
object

Not required in FoxPro.

.BAR Bar menu
object

Not required in FoxPro.

.BCH Batch
process
object

Not required in FoxPro.

.FIL Files list
object

Not required in FoxPro.

.POP Popup menu
object

Not required in FoxPro.

.STR Structure list
object

Not required in FoxPro.

.VAL Values list
object

Not required in FoxPro.

Appendix C: dBASE error numbers that represent different errors in
FoxPro

Erro
r

dBASE IV FoxPro

67 PROCEDUREs/FUNCTIONs nested
too deep

Expression evaluator fault

95 Source does not correspond to the
object

Statement not allowed in interactive
mode

103 Command cannot be called DO nesting too deep

130 Command not allowed in format files Record is not locked

178 Function not found: <function> MENU has not been activated

179 File not open in current work area:
<file>

POPUP has not been activated

225 Right margin must be less than or
equal to 255

"<name>" is not a memory variable

226 Tab stops must be in ascending order "<name>" is not a file variable

232 ALIAS expression not in range "<name>" is not an array

279 PROMPTS for this popup have
already been defined

Menu/Popup was not pushed

411 Original memo cannot be larger than
64K

RUN/! command string too long

412 Not a valid disk drive: <drive> Cannot locate COMSPEC environment
variable

1001 Name longer than 10 characters Feature not available

1002 Invalid character I/O operation failure

1003 Missing end quotes for string Free handle not found

1004 Undefined symbol Use of invalid handle

1010 Name, constant, or expression
expected

Area size exceeded during compaction

1011 Invalid constant Area cannot contain handle

1012 Name expected (cannot be reserved
word)

OS memory error

1098 Nested function not allowed API function UserError() was called

1101 Only one column may be SELECTed
in a subquery

Cannot open file "<file>"

1102 Index name already exists Cannot create file

1103 Aggregate function not allowed in
WHERE clause

Illegal seek offset

1104 Number of view columns does not
match number of SELECT columns

File read error

1105 View column names must be specified File write error

1106 INTO is not allowed in a view
definition

Transaction in progress

Appendix C: dBASE error numbers that represent different errors in FoxPro

1108 View is not updatable : <view> Picture too big

1111 View defined with GROUP BY cannot
be used in a query with a GROUP BY
clause

Invalid file descriptor

1112 Incorrect data type for arguments in
dBASE function

File close error

1113 Incorrect number of arguments in
dBASE function

File not open

1115 An illegal table is referenced in a
subselect FROM clause: <table>

Invalid operation for CURSOR

1117 Views cannot be INDEXed : <view> Wrong length key

1124 Cursor not open : <cursor name> Key too big

1126 Different table name is specified in
cursor declaration: <cursor>

Record too long

1127 INTO clause not allowed in cursor
declaration

For/while need logical expressions

1130 Column name missing in
AVG/MAX/MIN/SUM/COUNT

'Field' phrase not found

1134 Comparison operator or key word
expectd

Variable must be in selected table

Appendix C: dBASE error numbers that represent different errors in FoxPro

1140 Catalog table(s) locked by another
user: <catalog table>

FILTER expression too long

1141 Cannot DROP open database :
<database>

Invalid index number

1145 Invalid character length Must be a character, date or numeric
key field

1147 SAVE TO TEMP clause not allowed Target is already engaged in relation

1148 Number of SAVE TO TEMP columns
does not match number of SELECT
columns

Meaningless use of expression

1149 Column/field names must be specified
in SAVE TO TEMP clause

No memory for buffer

1150 Invalid string operator No memory for buffer

1151 Cannot ALTER views : <view name> No memory for filename

1152 Invalid INSERT item Cannot access selected table

1153 Numeric value too small Attempt to move file to different
device

Appendix C: dBASE error numbers that represent different errors in FoxPro

1154 No current row available for UPDATE
or DELETE: <cursor>

Invalid buffpoint call

1155 Can't create subdirectory for new
database

Invalid buffdirty call

1156 Name longer than 8 characters not
allowed

Duplicate field names

1157 Invalid unary operator Cannot update file

1160 This type of correlated subquery Not enough disk space for
"<filename>"

1161 Catalog tables are read-only : <table> Too many records to BROWSE/EDIT
in demo version

1162 Non-numeric array subscript Procedure "<procedure>" not found

1163 Memory variable and dBASE function
not allowed in SELECT clause with
UNION

Browse table closed

1164 All SELECT columns must be inside
an aggregate function

Browse structure changed

1201 Cannot GRANT or REVOKE a
privilege to yourself

Too many names used

1202 Duplicate user ID Program too large

Appendix C: dBASE error numbers that represent different errors in FoxPro

1217 Filename is same as existing synonym Picture error in GET statement

1220 Internal SQL utility error #3 Invalid character in command

1221 Internal SQL utility error #4 Required clause not present in
command

1223 Table not found in the SQL catalog
tables

Invalid variable reference

1225 DBCHECK and RUNSTATS must be
used with base tables

Must be a memory variable

1226 File is encrypted Must be a file variable

1229 Catalog table Sysdbs does not exist Too few arguments

1230 File is not legal dBASE/SQL : <file> Too many arguments

1231 File not found in the current database Missing operand

1245 Internal SQL error #29 Error in label field definition

Appendix C: dBASE error numbers that represent different errors in FoxPro

1282 File encryption error Insufficient memory

1249 Unable to open the SYSDBS file in the
SQL home directory

Too many READS in effect

Appendix D: Same errors with different numbers

dBASE FoxPro Error Message

29 1705 File not accessible

180 1621 PAD has not been DEFINEd for this MENU

207 19, 114 MDX file doesn't match database

244 1211 Missing ENDIF for previous IF command

245 1211 Missing ENDIF for previous IF/ELSE commands

247 1213 Missing ENDCASE for previous DO CASE command

249 1211 No previous IF to match this command

250 1213 No previous DO CASE to match this command

304 1649 No previous DO WHILE/SCAN/PRINTJOB to match this
command

305 1649 No previous PRINTJOB to match this command

341 1214 Missing ENDTEXT for previous TEXT

1275 1282 Insufficient memory

Appendix E: Network and security libraries
NETWARE.PLB

Microsoft Corporation

Installed with FoxPro MS-DOS 2.5

Find NETWARE.PLB in the root of the directory where you have installed FoxPro 2.5.
For documentation, see the help topic called Transaction Processing under General
Topics. This library allows you to call Novell Netware Transactional Tracking System
from FoxPro.

 TTSAVAIL() Checks for the presence of Novell Netware's TTS (Transactional
Tracking System)

 TTSATTRIB() Specifies that a file be included in a transaction

 BEGINTRAN() Specifies the beginning of a transaction

 COMMIT() Writes changes to the files included in the transaction

 RLLBACK() Backs out changes made to the files included in the transaction

FPNET

Platinum Software
17 Thorburn Road
North Potomac, Maryland 20878
301-330-5118
Price: MS-DOS $295.00/Windows $295.00 or $395.00 for both

Versions Supported: 2.5

Bindery and Bindery Security functions

 N_AddID() Add a userid/password into the bindery

 N_ChangeID() Change an application password

 N_DelID() Delete a userid/password entry for an application

 N_FindIDs() List all application userids stored in the bindery

 N_FullName() Get a workstation's full name

 N_Groups() List all the groups to which a user belongs

 N_IsEquiv() Check security equivalences

 N_IsMember() Check group membership

 N_LastLog() Show a user's last login date and time

 N_LoginID() Get a workstation's login name

 N_Members() List all members of a group

 N_ObjList() List names of bindery objects

 N_Operator() List names of console operators

 N_PQList() List names of print queues

Appendix E: Network and Security Libraries

 N_PropVal() List the property values of a bindery object

 N_SecEqs() List all security equivalences

 N_SList() List names of file servers

 N_UserList() Show all users logged in with login time & conn no

 N_VerId() Verify a user's application password in the bindery

 N_VerPswd() Check if a user's network login password is correct

File, File Server, and Directory

 N_AddTrust() Assign directory trustee rights

 N_ClrConn() Clear a logical connection from a fileserver

 N_Date() Get the network date from the fileserver

 N_DelTrust() Remove a user's trustee rights to a directory

 N_DownServ() Bring a fileserver down

Appendix E: Network and Security Libraries

 N_Flag() Change/show attributes of sets of files

 N_GetPath() Get a path for a given drive letter

 N_IsMap() Check if a drive letter is mapped

 N_IsOkLog() Check if a fileserver has login enabled

 N_Map() Map a drive path to a drive letter

 N_MapRem() Remove the mapping of a network drive

 N_NoLogin() Disable all fileserver logins

 N_NWRevDat() Get NetWare revision date

 N_NWVers() Get NetWare version and revision

 N_OkLogin() Enable fileserver logins

Appendix E: Network and Security Libraries

 N_RenDir() Rename a directory

 N_ServerID() Connection ID number of a fileserver

 N_ServFrID() Get the fileserver name given a connection ID

 N_ServName() Get the fileserver name mapped to a drive

 N_SetDate() Set fileserver date

 N_SetTime() Change the fileserver time

 N_Time() Get the network time from the fileserver

Appendix E: Network and Security Libraries

Message Services

 N_BFConGrp() Broadcast a message from the console to a group

 N_Brd2Cons() Broadcast a message to the console

 N_BrdFCons() Broadcast a message from the console

 N_Cast() Set a workstation's broadcast mode

 N_GetBMode() Show a workstation's broadcast mode

 N_GetBMsg() Get a broadcast message stored in a file server

 N_LogMsg() Record a message in NET$LOG.MSG

 N_SendMsg() Send a message to a network user

 N_SMsgGrp() Send a message to a group

Printer Services

 N_Capture() Turn On/Off LPT redirection

 N_GetPStat() Show all printer redirection information

Appendix E: Network and Security Libraries

 N_PJobList() Show all info about print jobs in a queue

 N_PJobMove() Change queue position of a print job

 N_PJobRem() Remove a print job from a queue

 N_SetPStat() Set printer redirection info of LPT device

Semaphore and TTS

 N_FlagTran() Flag a file transactional or not

 N_Semaphor() Lock or unlock a semaphore string

 N_SemClose() Close a semaphore

 N_SemOpen() Open a semaphore

 N_SemSig() Signal a semaphore (unlock function)

 N_SemVal() Get the semaphore value

Appendix E: Network and Security Libraries

 N_SemWait() Wait on a semaphore (lock function)

 N_TTSBeg() Begin an explicit transaction

 N_TTSEnd() End an explicit or implicit transaction

 N_TTSIsAvl() Check if TTS is available

 N_TTSOff() Disable TTS on default server

 N_TTSOn() Enable TTS on default server

 N_TTSZap() Abort an implicit or explicit transaction

Appendix E: Network and Security Libraries

Workstation and Connection Services

 N_Attach() Attach to a fileserver

 N_Detach() Detach from a fileserver

 N_DfServer() Set the preferred fileserver

 N_GetMATyp() Get the workstation's machine type

 N_GetOSTyp() Get the workstation's OS name

 N_GetOSVer() Get the workstation's OS revision level

 N_GetSMTyp() Get the workstation's short machine type

 N_IsAttach() Is the workstation attached to a fileserver

 N_IsLogged() Show if a user is currently logged in

 N_IsNWBoss() Check workstation's console privileges

 N_LocDrv() Show the number of local drives

Appendix E: Network and Security Libraries

 N_LogDate() Get a workstation's login date

 N_LogTime() Get a workstation's login time

 N_LoginFS() Login to a fileserver

 N_Logout() Logout from all fileservers

 N_LogoutFS() Logout a user from a fileserver

 N_StaAdr() Get a workstation's physical node address

 N_StaID() Get a workstation's ID

Workstation Equipment Information

 N_DosVer() Get DOS version

 N_DskFree() Get free disk space on drive

 N_DskSpace() Get total capacity of drive

Appendix E: Network and Security Libraries

 N_IsDisk() Check for valid drive or disk on drive

 N_IsMouse() Check if mouse is active

Appendix E: Network and Security Libraries

GPLIB

George Sexton [73237,1665]

Price: Public domain (free). Download from CompuServe, FoxForum. The file is called
GPLIB.ZIP

Currently supports FoxPro 2.0

 AboutGPLIB() Return version information for GPLIB

 AMPM() Function to return time as character string with AM or PM
appended

 ColdBoot() Coldboot a computer

 CtlAltShft() Return true if Control, Alt or Shift key is held down

 ElapseTime() Function to return difference in minutes between two time
strings

 FileCount() Function to return # of matching files in a directory

 FindFirst() Function to perform a DOS find first/find next

 FKillAll() Wild Card File Erase

 Flag() Set DOS file attributes

 GenError() Function to generate a FoxPro error

Appendix E: Network and Security Libraries

 IsDiskIn() Function to return whether a disk is in the floppy drive specified

 Make_Dir() Create directory

 Math_Chip() Return true if a 80x87 math coprocessor is installed

 MReset() Perform mouse reset & return number of buttons

 Num_Serial() Return Number of Serial Ports

 N_AcctList() Return list of user accounts from server

 N_Attach() Attach to a file server

 N_Brd2Cons() Broadcast message to server console

 N_BrdFCons() Broadcast message from server console

 N_Capture() Toggle capture on or off

Appendix E: Network and Security Libraries

 N_Cast() Set whether station will accept broadcast messages

 N_Date() Return File Server Date

 N_Detach() Detach from file server

 N_DfServer() Change default server

 N_FlushLPT() Flush capture of specified LPT port

 N_FullName() Return users full name

 N_GetBMode() Return current station broadcast mode

 N_GetBMsg() Retrieve a stored message from the file server

 N_GetGroup() Return list of groups from server

 N_GetMaTyp() Get Long Machine Type

 N_GetOSTyp() Return Operating System Type

Appendix E: Network and Security Libraries

 N_GetOSVer() Return Operating System Version

 N_GetPath() Return Path for a drive letter

 N_GetPStat() Get current Capture Settings

 N_GetQList() Return List of Queues from server

 N_GetSList() Return List of Servers from the file server

 N_GetSMTyp() Get Short Machine Type

 N_GetWild() Get List Of all bindery objects from server

 N_IsAttach() Return whether attached to a server

 N_IsEquiv() Return Security Equivalence

 N_IsLogged() Return whether specified user is logged into the network

Appendix E: Network and Security Libraries

 N_IsMap() Return whether drive is mapped to a NetWare file server

 N_IsMember() Return Group Membership

 N_IsNWBoss() Return whether workstation is a console operator

 N_LastLog() Return last login date & time for a user

 N_LocDrv() Return number of logical local drives

 N_LogDate() Return Login date

 N_LoginFS() Login to a file server

 N_LoginID() Return NetWare User ID

 N_Logout() Logout of all file servers

 N_LogoutFS() Logout of specified file server

 N_LogTime() Return Login Time

Appendix E: Network and Security Libraries

 N_Map() Map a drive

 N_MapRem() Remove A drive mapping

 N_MaxConns() Return Maximum NetWare connections

 N_NoLogin() Disable Login

 N_NukeSta() Clear Specified Connection Number

 N_OkLogin() Enable Login

 N_PJobList() Function to create an array containing print jobs for the
specified queue

 N_PJobMove() Function to move print job within a print queue

 N_PJobRem() Function to remove a print job from a queue

 N_PwdDate() Return date users password expires

Appendix E: Network and Security Libraries

 N_Semaphor() Perform Netware semaphore locking

 N_SendMsg() Send a message to another network user

 N_ServerID() Return ID number of specified server

 N_ServFrID() Return server name from connection ID

 N_ServName() Return file server name for a mapped drive

 N_SetPStat() Modify Current capture settings

 N_ShellVer() Return Shell Version

 N_StaAddr() Return Physical station Address

 N_StaID() Return NetWare station number

 N_SYSTime() Synchronize stations clock to server

 N_Time() Return File Server Time

Appendix E: Network and Security Libraries

 N_VerPwd() Verify a users password

 Rem_Dir() Remove a directory

 SetMLimit() Set Mouse Limits

 SetMPos() Set Mouse Cursor Position

 ShftPrtScr() Invoke Hardware Interrupt 5 (Shift Printscreen)

 TrimLen() Return Trimmed Length of a String

 UniqueName() Return unique filename

NetLib

Pinnacle Publishing
PO Box 8099
Federal Way, Washington 98003,0099
800-788-1900
206-251-1900
Price: $299.00
Versions Supported: FoxPro 2.0

A version for FoxPro 2.5 for MS-DOS is due Q2 1993 and for FoxPro for Windows Q4
1993.

Appendix E: Network and Security Libraries

General network functions

N_ADDR() Get physical network address

N_APPEND() Append to .TXT or >SDF file

N_AREDIRECT()

Store redirected devices and npaths in array

N_SERVER()* Return list of attached servers

N_ATTACH()* Attach to specified server

N_CHECKF() Get stations with RLOCK/FLOCK in file

N_CHECKR() Get station with record locked

N_CHECKS() Get stations with locked semaphore

N_CHECKU() Get stations with .DBF in use

N_CONNECT()* Initialize connection to station(s)

N_DATE()* Get current date from server

Appendix E: Network and Security Libraries

N_DETACH()* Detach from specified server

N_DISCON()* Disconnect from station(s)

N_ENVLEN() Return length of root environment string

N_ENVSIZ() Return size of root environment space

N_ERROR() Return error code from most recent NetLib function

N_FATTR() Set or get file attribute

N_FCOPY() Copy file

N_FDRIVE() Get drive letter portion of filespec

N_FEXT() Get extension portion of filespec

N_FMAP() Get filespec associated with handle

Appendix E: Network and Security Libraries

N_FNAME() Get base filename part of filespec

N_FPATH() Get current directory or path portion of filespec

N_FSPEC() Get full filespec for filename

N_FULLNAME()
*

Get user full name

N_FVOL() Get network volume name

N_ISEXCL() .T. = current file is exclusive

N_ISFLOCK() .T. = current file is locked

N_ISRLOCK() .T. = specific record is locked

N_ISSLOCK() .T. = semaphore is locked

N_JOURNAL() Open file for journaling

Appendix E: Network and Security Libraries

N_LOGIN()* Attach and log object into default server

N_LOGMSG()* Write comment to system log

N_LOGOUT()* Log out from specified server

N_MAPDRIVE()* Create, query, or destroy a drive mapping

N_MLOCK() Lock multiple records in file

N_MODENV() Set new environment variable

N_NDX() Get number and name of index file(s)

N_NETNAME()** Return NetBIOS name table entry

N_PRTSC() Print screen contents using INT5

N_READONLY() Open file in read-only mode

N_READY() .T. = on network

Appendix E: Network and Security Libraries

N_RECV()* Receive message

N_REDIRECT()**
*

Set, get or cancel device redirection

N_RESTATTR() Restore screen attributes

N_RIGHTS()* Get driectory rights

N_SAVEATTR() Save screen attributes

N_SECONDS() Get seconds since 12 a.m. from server

N_SEND()* Send message to station(s)

N_SERIAL()* Return serial number of server

N_SERVER()* Get or set server

N_SERVNUM()* Return connection number of server

Appendix E: Network and Security Libraries

N_SETLOG()* Enable or disable login to specified server

N_SETTIME() End wait state, call event procedure

N_SLOCK() Lock semaphore

N_SOFTSCR() Print screen by software emulation

N_STAMAX() Get highest station number

N_STANUM() Get current station number

N_SUNLOCK() Unlock semaphore

N_TIME()* Get time from server

N_USE() Open database file

N_VERSION()* Return server version number and other statistics

N_WHERE() Get station where user is logged in

Appendix E: Network and Security Libraries

N_WHOAMI() Get user ID

Printing functions

N_BANNER()* Set print banner page

N_CLASS()* Set document print class

N_COPIES()* Set print copy count

N_PRINTER() Get target printer number

N_SPLFRM()* Set print form name

N_SPLLPT()* Set LPT capture number

N_SPLQUE()* Set spool capture queue

N_SPLSRV()* Set print server

N_SPLTABS()* Set tab expansion count

Appendix E: Network and Security Libraries

N_SPLTMO()* Set print timeout

N_SPOOL() Start or stop spool capture

Encryption Functions

N_CODELVL() Get encryption status

N_DECODE() Decrypt file

N_DECODEST() Decrypt string

N_ENCODE() Encrypt file

N_ENCODEST() Encryp string

N_SETKEY() Set encryption key

Netware Bindery functions

N_B_CREATE()* Create bindery object

N_B_DEL()* Delete binder object

Appendix E: Network and Security Libraries

N_B_ID()* Return Binder ID of specified object

N_B_ISMEMBER
()*

.T. = member object is part of set

N_B_LINK()* Connect object to set

N_B_MEMBERS(
)*

Store names of set members in specified array

N_B_NAME()* Return name of specified Bindery object

N_B_PASSWORD
()*

.T. = password is valid

N_B_PRCREATE(
)*

Create Bindery property

N_B_PRSCAN()* Store names of all properties attached to specified array

N_B_PRREAD()* Return value of specified property

Appendix E: Network and Security Libraries

N_B_PRTYPE()* Return type of specified property

N_B_PRWRITE()
*

Modify Bindery item property

N_B_SCAN()* Scan Bindery for matching objects and place names into array

N_B_TYPE()* Return type of specified Bindery object

N_B_UNLINK()* Disconnect object from set

*Novell Netware only

**NetBIOS only

***NetBIOS and Banyan VINES only

Appendix F: Clipper 5.x incompatabilities

Preprocessor directives

#command
#define
#error
#ifdef
#ifndef
#include
#stdout
#undef
#xcommand
Operators

:=
++
--
Variable Types

STATIC
LOCAL
Data Types

Codeblocks
NIL
Classes

Error
Get
TBrowse
TBColumn
Commands

DELETE TAG
GO
INDEX
SEEK
SET INDEX
SET ORDER
Functions

AEVAL()
ALERT()
ARRAY()
ATAIL()
BREAK()
BROWSE()

DBAPPEND()
DBAPPEND()
DBCLEARFIL()
DBCLEARIND()
DBCLEARREL()
DBCLOSEALL()
DBCLOSEAREA()
DBCOMMIT()
DBCOMMITALL()
DBCREATE()
DBCREATEIND()
DBDELETE()
DBEVAL()
DBFILTER()
DBGOBOTTOM()
DBGOTO()
DBGOTO()
DBGOTOP()
DBRECALL()
DBREINDEX()
DBRELATION()
DBRLOCK()
DBRLOCKLIST()
DBRSELECT()
DBRUNLOCK()
DBSEEK()
DBSELECTAR()
DBSETDRIVER()
DBSETFILTER()
DBSETINDEX()
DBSETINDEX()
DBSETORDER()
DBSETRELAT()
DBSKIP()
DBSTRUCT()
DBUNLOCK()
DBUNLOCKALL()
DBUSEAREA()
DEVOUT()
DEVOUTPICT()
DEVPOS()
DISPBEGIN()

DISPBOX()
DISPCOUNT()
DISPEND()
DISPOUT()
ERRORBLOCK()
EVAL()
EXP()
FIELDBLOCK()
FIELDGET()
FIELDNAME()
FIELDPOS()
FIELDPUT()
FIELDWBLOCK()
HEADER()
MEMVARBLOCK()
NOSNOW()
ORDBAGEXT()
ORDBAGNAME()
ORDCREATE()
ORDDESTROY()
ORDFOR()
ORDKEY()
ORDLISTADD()
ORDLISTCLEAR()
ORDLISTREBUI()
ORDNAME()
ORDNUMBER()
ORDSETFOCUS()
OS()
OUTERR()
OUTSTD()
QOUT()
RDDLIST()
RDDNAME()
RDDSETDEFAULT()
READMODAL()
RECNO()
SETBLINK()
SETCANCEL()
SETCOLOR()
SETCURSOR()
SETKEY()

SETMODE()
SETPOS()
SETPRC()
VALTYPE()
VERSION()
GET System

GETACTIVE()
GETAPPLYKEY()
GETDOSETKEY()
GETPOSTVALIDATE(
)
GETPREVALIDATE()

GETREADER()
READFORMAT()
READKILL()
READUPDATED()

Appendix G: Key assignments

FoxPro ON KEY LABEL KEY assignments
Keycap identification Key label

Left arrow LEFTARROW

Right arrow RIGHTARROW

Up arrow UPARROW

Down arrow DNARROW

Home HOME

End END

PgUp PGUP

PgDn PGDN

Del DEL

Backspace BACKSPACE

Spacebar SPACEBAR

Ins INS

Tab TAB

Shift Tab BACKTAB

Enter ENTER

{ LBRACE

} RBRACE

F1 to F12 F1, F2 ...

Ctrl+F1 to Ctrl+F12 Ctrl+F1, Ctrl+F2 ...

Shift+F1 to Shift+F9 Shift+F1, Shift+F9...

Shift+F11, Shift+F12 Shift+F11 ...

Alt+F1 to Alt+F12 Alt+F1, Alt+F2 ...

Alt+0 to Alt-9 Alt+0, Alt+1 ...

Alt+A to Alt+Z Alt+A, Alt+B ...

Alt+PgUp Alt+PGUP

Alt+PgDn Alt+PGDN

Ctrl+left arrow Ctrl+LEFTARROW

Ctrl+right arrow Ctrl+RIGHTARROW

Ctrl+Home Ctrl+HOME

Ctrl+End Ctrl+END

Ctrl+PgUp Ctrl+PGUP

Ctrl+PgDn Ctrl+PGDN

Ctrl+A to Ctrl+Z Ctrl+A, Ctrl+B ...

Right Mouse RIGHTMOUSE

Left Mouse LEFTMOUSE

Mouse MOUSE

Escape ESC

Appendix G: Key assignments

INKEY() codes for FoxPro, dBASE and Clipper Summer '87

Function and cursor movement keys

FoxPr
o

dBAS
E

Clipper
S'87

FoxP
ro

dBAS
E

Clipper
S'87

Ctrl-End 373 23 23 Backspace 127 127 8

Ctrl-Home 375 26 29 Ctrl-
Backsp

NA -401 127

Ctrl-Leftarrow 371 1 26 Delete 339 NA 7

Ctrl-PgDn 374 30 30 Downarro
w

336 24 24

Ctrl-PgUp 388 31 31 End 335 2 6

Ctrl-Return 10 -402 10 Home 327 26 1

Ctrl-
Rightarrow

372 6 2 Insert 338 NA 22

Return/Enter 13 13 13 Leftarrow 331 19 19

Esc 27 27 27 PgDn 337 3 3

Appendix G: Key assignments

F1 315 28 28 PgUp 329 18 18

F2 316 -1 -1 Rightarro
w

333 4 4

F3 317 -2 -2 Shift-Tab 15 -400 271

F4 318 -3 -3 Tab 9 9 9

F5 319 -4 -4 Uparrow 328 5 5

F6 320 -5 -5

F7 321 -6 -6

F8 322 -7 -7

F9 323 -8 -8

F10 324 -9 -9

Appendix G: Key assignments

Alt and Ctrl keys

FoxPr
o

dBAS
E

Clipper
S'87

FoxPr
o

dBAS
E

Clipper
S'87

Alt-A 286 -435 30 Ctrl-A 1 1 1

Alt-B 304 -434 48 Ctrl-B 2 2 2

Alt-C 302 -433 46 Ctrl-C 3 3 3

Alt-D 288 -432 32 Ctrl-D 4 4 4

Alt-E 274 -431 18 Ctrl-E 5 5 5

Alt-F 289 -430 33 Ctrl-F 6 6 6

Alt-G 290 -429 34 Ctrl-G 7 7 7

Alt-H 291 -428 35 Ctrl-H 8 8 8

Alt-I 279 -427 23 Ctrl-I 9 9 9

Alt-J 292 -426 36 Ctrl-J 10 10 10

Appendix G: Key assignments

Alt-K 293 -425 37 Ctrl-K 11 11 11

Alt-L 294 -424 38 Ctrl-L 12 12 12

Alt-M 306 -423 50 Ctrl-M 13 13 13

Alt-N 305 -422 49 Ctrl-N 14 14 14

Alt-O 280 -421 24 Ctrl-O 15 15 15

Alt-P 281 -420 25 Ctrl-P 16 16 16

Alt-Q 272 -419 16 Ctrl-Q 17 17 17

Alt-R 275 -418 19 Ctrl-R 18 18 18

Alt-S 287 -417 31 Ctrl-S 19 19 19

Alt-T 276 -416 20 Ctrl-T 20 20 20

Appendix G: Key assignments

Alt-U 278 -415 22 Ctrl-U 21 21 21

Alt-V 303 -414 47 Ctrl-V 22 22 22

Alt-W 273 -413 17 Ctrl-W 23 23 23

Alt-X 301 -412 45 Ctrl-X 24 24 24

Alt-Y 277 -411 21 Ctrl-Y 25 25 25

Alt-Z 300 -410 44 Ctrl-Z 26 26 26

Appendix G: Key assignments

Shift, Alt, and Ctrl-Function keys

FoxPr
o

dBAS
E

Clipper
S'87

Alt-F1 104 NA -30

Alt-F2 105 NA -31

Alt-F3 106 NA -32

Alt-F4 107 NA -33

Alt-F5 108 NA -34

Alt-F6 109 NA -35

Alt-F7 110 NA -36

Alt-F8 111 NA -37

Alt-F9 112 NA -38

Alt-F10 113 NA -39

Appendix G: Key assignments

Ctrl-F1 94 -10 -20

Ctrl-F2 95 -11 -21

Ctrl-F3 96 -12 -22

Ctrl-F4 97 -13 -23

Ctrl-F5 98 -14 -24

Ctrl-F6 99 -15 -25

Ctrl-F7 100 -16 -26

Ctrl-F8 101 -17 -27

Ctrl-F9 102 -18 -28

Appendix G: Key assignments

Ctrl-F10 103 -19 -29

Shift-F1 84 -20 -10

Shift-F2 85 -21 -11

Shift-F3 86 -22 -12

Shift-F4 87 -23 -13

Shift-F5 88 -24 -14

Shift-F6 89 -25 -15

Shift-F7 90 -26 -16

Shift-F8 91 -27 -17

Shift-F9 92 -28 -18

Appendix G: Key assignments

Shift-F10 93 -29 -19

Appendix I: FoxPro Reserved Words
If a dBASE IV program uses a FoxPro reserved word as an array name, FoxPro displays
the error message "Attempt to use FoxPro function as an array." If you use a reserved
word as a UDF name, FoxPro will call the internal command or function instead, with
varying error messages.

#ENDIF

#IF

#ITSEXPRESSION

#READCLAUSES

#REGION

#SECTION

#WNAME

.AND.

.F.

.NOT.

.OR.

.T.

@FUNCTION

@PROCEDURE

_ALIGNMENT

_BOX

_CALCMEM

_CALCVALUE

_CLIPTEXT

_CUROBJ

_DBLCLICK

_DIARYDATE

_DOS

_GENGRAPH

_GENMENU

_GENPD

_GENSCRN

_GENXTAB

_INDENT

_LMARGIN

_MAC

_MLINE

_PADVANCE

_PAGENO

_PBPAGE

_PCOLNO

_PCOPIES

_PDRIVER

_PDSETUP

_PECODE

_PEJECT

_PEPAGE

_PFORM

_PLENGTH

_PLINENO

_PLOFFSET

_PPITCH

_PQUALITY

_PRETEXT

_PSCODE

_PSCODE

_PSPACING

_PWAIT

_RMARGIN

_TABS

_TALLY

_TEXT

_THROTTLE

_TRANSPORT

_WINDOWS

_WRAP

ABS

ACCEPT

ACCESS

ACOPY

ACOS

ACTIVATE

ADD

ADDITIVE

ADEL

ADIR

AELEMENT

AFIELDS

AFONT

AFTER

AGAIN

AINS

ALEN

ALIAS

ALL

ALLTRIM

ALTERNATE

AMERICAN

AMPM()

AND

ANSI

ANSITOOEM

APP

APPEND

APPLICATION

ARRAY

AS

ASC

ASCAN

ASCENDING

ASIN

ASORT

ASSIST

ASUBSCRIPT

AT

ATAN

ATC

ATCLINE

ATLINE

ATN

ATN2

AUTO

AUTOMATIC

AUTOSAVE

AVERAGE

AVG

BAR

BEFORE

BEGIN

BELL

BETWEEN

BG

BLANK

BLINK

BLOCKSIZE

BOF

BORDER

BOTTOM

BOX

BR

BREAK

BRITISH

BROWSE

BRSTATUS

BUILD

BY

CALCULATE

CALL

CANCEL

CAPSLOCK

CARRY

CASE

CATALOG

CDOW

CDX

CEILING

CENTER

CENTURY

CGA

CHAIN

CHANGE

CHR

CHRSAW

CHRTRAN

CLEAR

CLOCK

CLOSE

CMONTH

CNT

CNTBAR

CNTPAD

COL

COLOR

COLOUR

COLUMN

COMMAND

COMMIT

COMPACT

COMPATIBILITY

COMPATIBLE

COMPILE

COMPLETED

COMPRESS

CONFIRM

CONSOLE

CONTINUE

CONVERT

COPY

COS

COUNT

CREATE

CTOD

CURDIR

CURRENCY

CURSOR

CYCLE

DATABASE

DATABASES

DATE

DAY

DB

DB4

DBASEII

DBDATE

DBF

DBMEMO3

DDEAbortTrans

DDEAdvise

DDEEnabled

DDEExecute

DDEInitiate

DDELastError

DDEPoke

DDERequest

DDESetOption

DDESetService

DDESetTopic

DDETerminate

DEACTIVATE

DEBUG

DECIMALS

DECLARE

DEFAULT

DEFINE

DELETE

DELETED

DELIMITED

DELIMITER

DELIMITERS

DESC

DESCENDING

DESIGN

DEVELOPMENT

DEVICE

DIF

DIFFERENCE

DIMENSION

DIR

DIRECTORY

DISABLE

DISKSPACE

DISPLAY

DISTINCT

DMY

DO

DOHISTORY

DOS

DOUBLE

DOW

DTOC

DTOR

DTOS

ECHO

EDIT

EGA25

EGA43

EJECT

ELSE

ELSEIF

EMPTY

ENABLE

ENCRYPT

ENCRYPTION

END

ENDCASE

ENDDO

ENDFOR

ENDIF

ENDPRINTJOB

ENDSCAN

ENDTEXT

ENVIRONMENT

EOF

ERASE

ERROR

ESCAPE

EVALUATE

EXACT

EXCEPT

EXCLUSIVE

EXIT

EXP

EXPORT

EXTENDED

EXTERNAL

FCHSIZE

FCLOSE

FCOUNT

FCREATE

FEOF

FERROR

FFLUSH

FGETS

FIELD

FIELDS

FILE

FILER

FILES

FILL

FILTER

FIND

FIXED

FKLABEL

FKMAX

FLOAT

FLOCK

FLOOR

FLUSH

FONTMETRIC

FOOTER

FOPEN

FOR

FORM

FORMAT

FOUND

FOXPLUS

FOXPRO

FOXQ

FOXSWAP

FPUTS

FREAD

FREEZE

FRENCH

FROM

FSEEK

FSIZE

FULLPATH

FV

FW

FW2

FWRITE

GATHER

GB

GENERAL

GERMAN

GET

GETBAR

GETDIR

GETENV

GETEXPR

GETFILE

GETFONT

GETPAD

GETS

GO

GOMONTH

GOTO

GR

GROUP

GROW

HAVING

HEADER

HEADING

HEIGHT

HELP

HELPFILTER

HIDE

HIGHLIGHT

HISTORY

HOURS

IF

IIF

IMPORT

IN

INDEX

INDEXES

INFORMATION

INKEY

INLIST

INPUT

INSERT

INSMODE

INSTRUCT

INT

INTENSITY

INTO

ISALPHA

ISCOLOR

ISDIGIT

ISLOWER

ISMARKED

ISUPPER

ITALIAN

JAPAN

JOIN

KEY

KEYBOARD

KEYCOMP

LABEL

LAST

LASTKEY

LEDIT

LEFT

LEN

LEVEL

LIB

LIBRARY

LIKE

LINE

LINENO

LINKAGE

LIST

LKSYS

LOAD

LOCATE

LOCFILE

LOCK

LOG

LOG10

LOGERRORS

LOGOUT

LOOKUP

LOOP

LOWER

LPARTITION

LTRIM

LUPDATE

MACKEY

MACRO

MACROS

MARGIN

MARK

MASTER

MAX

MCOL

MDOWN

MDX

MDY

MEMLINES

MEMO

MEMORY

MEMOWIDTH

MEMVAR

MENU

MENUS

MESSAGE

MESSAGES

MIN

MINIMIZE

MLINE

MOD

MODAL

MODIFY

MODULE

MONO43

MONTH

MOUSE

MOVE

MOVER

MRKBAR

MRKPAD

MROW

MULTI

MULTILOCKS

NDX

NEAR

NETWORK

NEXT

NOALIAS

NOAPPEND

NOCLEAR

NOCLOSE

NOCONSOLE

NODEBUG

NODELETE

NOEDIT

NOEJECT

NOENVIRONMENT

NOFLOAT

NOFOLLOW

NOGROW

NOINIT

NOLGRID

NOLINK

NOLOCK

NOMARGIN

NOMENU

NOMODIFY

NOMOUSE

NONE

NOOPTIMIZE

NOOVERWRITE

NOREFRESH

NORGRID

NORM

NORMAL

NOSAVE

NOSHADOW

NOSHOW

NOT

NOTAB

NOTE

NOTIFY

NOUPDATE

NOWAIT

NOWINDOW

NOZOOM

NPV

NUMBER

NUMLOCK

OBJECT

OBJNUM

OCCURS

ODOMETER

OEMTOANSI

OF

OFF

ON

ONKEY

ONLY

OPEN

OPTIMIZE

OR

ORDER

OS

OTHERWISE

OVERWRITE

PACK

PAD

PADC

PADL

PADR

PAGE

PALETTE

PANEL

PARAMETERS

PARTITION

PATH

PAUSE

PAYMENT

PCOL

PDOX

PDRIVER

PDSETUP

PFS

PI

PICTURE

PLAIN

PLAY

POINT

POP

POPUP

POPUPS

PRECISION

PREFERENCE

PREVIEW

PRIMARY

PRINT

PRINTER

PRINTJOB

PRINTSTATUS

PRIVATE

PRMBAR

PRMPAD

PRODUCTION

PROGRAM

PROJECT

PROMPT

PROPER

PROW

PUBLIC

PUSH

PUTFILE

PV

QUERY

QUIT

RAND

RANDOM

RANGE

RANK

RAT

RATLINE

RB

RDLEVEL

READ

READERROR

READKEY

RECALL

RECCOUNT

RECNO

RECORD

RECSIZE

REDIT

REFERENCE

REFRESH

REGION

REGIONAL

REINDEX

RELATION

RELATIVE

RELEASE

REMARK

RENAME

REPLACE

REPLICATE

REPORT

REPROCESS

RESET

RESOURCE

REST

RESTORE

RESUME

RETRY

RETURN

RG

RIGHT

RLOCK

ROLLBACK

ROUND

ROW

RPD

RTOD

RTRIM

RUN

SAFETY

SAME

SAMPLE

SAVE

SAY

SCAN

SCATTER

SCHEME

SCOLS

SCOREBOARD

SCREEN

SCROLL

SDF

SECONDARY

SECONDS

SECTION

SEEK

SELECT

SELECTION

SEPARATOR

SEQUENCE

SET

SHADOW

SHADOWS

SHOW

SIGN

SIN

SINGLE

SIZE

SKIP

SKPBAR

SKPPAD

SNAP

SNAPCODE

SNAPMACRO

SOFTSEEK

SORT

SOUNDEX

SPACE

SQL

SQRT

SROWS

STATUS

STD

STEP

STICKY

STORE

STR

STRTRAN

STRUCTURE

STUFF

STYLE

SUBSTR

SUM

SUMMARY

SUSPEND

SYLK

SYS

SYSMENU

SYSMETIRC

SYSTEM

TAB

TABLE

TABS

TAG

TALK

TAN

TARGET

TEXT

TEXTMERGE

TIME

TIMEOUT

TITLE

TITLES

TO

TOP

TOPIC

TOTAL

TRANSACTION

TRANSFORM

TRAP

TRBETWEEN

TRIM

TXTWIDTH

TYPE

TYPEAHEAD

UDFPARMS

UNION

UNIQUE

UNLOCK

UNPACK

UPDATE

UPDATED

UPPER

USA

USE

USED

USER

USERS

USING

VAL

VALID

VALUE

VALUES

VAR

VARREAD

VERSION

VGA

VGA25

VGA50

VIEW

WAIT

WBORDER

WCHILD

WCOLS

WEXIST

WFONT

WHEN

WHERE

WHILE

WIDTH

WINDOW

WINDOWS

WITH

WK

WK1

WK3

WKS

WLAST

WLCOL

WLROW

WMAXIMUM

WMINIMUM

WONTOP

WORKAREA

WOUTPUT

WPARENT

WR

WR1

WRAP

WREAD

WRK

WROWS

WTITLE

WVISIBLE

XLS

YEAR

YMD

ZAP

ZOOM

INDEX

µ.DBF, 6, 18

.DBO, 18

.DBT, 7, 18

.FMO, 18

.FMT, 12, 18

.FRG, 13, 18

.FRM, 10, 12, 18

.FRO, 18

.LBG, 14, 18

.LBL, 10, 14, 18

.LBO, 18

.MDX, 7

.NDX, 7, 18, 58

.PRG, 18

.PRS, 15, 18

.QBE, 7, 18

.SCR, 10

<=, 26

=<, 26

== (comparison operator), 71

=>, 26

>=, 26

@...GET, 19, 20

@...GET MESSAGE, 35

@...GET OPEN WINDOW, 20

@...GET REQUIRED, 19

@...SAY, 20

ACCESS, 43

ACHOICE(), 71

ACTIVATE MENU, 21

ACTIVATE POPUP, 21

ACTIVATE SCREEN, 21

ACTIVATE WINDOW, 21

ADIR(), 75

AFIELDS(), 75

AFILL(), 75

ALTD(), 76

APPEND FROM FIELDS, 76

APPEND FROM WHILE, 76

APPEND MEMO, 21

Applications Generator, 15

array, 102

Arrays, 53

BARCOUNT(), 22

BARPROMPT(), 22

BEGIN SEQUENCE...[BREAK]...END, 66

BEGIN SEQUENCE..[BREAK]...END, 77

BEGIN TRANSACTION, 55

BIN2I(), 77

BIN2L(), 77

BIN2W(), 77

BLANK (version 1.5 only), 23

BROWSE, 23, 24, 25

BROWSE COMPRESS, 23

BROWSE NOFOLLOW, 24

BROWSE NOINIT, 24

BROWSE NOMENU, 24

BROWSE NOORGANIZE, 25

CALL, 25, 78

CALL(), 25

CANCEL, 78

CATALOG(), 25

CLEAR, 33, 78

COMMIT, 79

Comparison operators, 26

COMPLETED, 55

COMPRESS, 23

CTOD(), 26

Databases, 6

DBEDIT(), 79

DBFILTER(), 80

DBRELATION(), 80

DBRSELECT(), 81

DEFINE BAR, 35

DEFINE MENU, 27, 35

DEFINE PAD, 35

DEFINE POPUP, 35

DESCEND(), 81

DESCENDING(), 27

DOSERROR(), 82

END TRANSACTION, 55

Error handling, 65

ERROR(), 28

ERRORLEVEL(), 83

EXCLUSIVE, 56

Export .PRG, 108

EXTERNAL, 83

FCREATE(), 28

FDATE(), 29

FGETS(), 29

File Converter, 10, 11

File extensions, 18

FLDCOUNT(), 29

FLDLIST(), 30

FOPEN(), 28

FOR(), 30

Format files, 12

format files, 12

FPUTS(), 30

FREAD(), 84

FREADSTR(), 84

FSIZE(), 31

FTIME(), 31

Function Calls, 64

HARDCR(), 85

Help, 107

HOME(), 31

I2BIN(), 85

ID(), 32

IF, 86

IF(), 86

Indexes, 7

INDEXEXT(), 87

INDEXKEY(), 87

INDEXORD(), 87

INKEY(), 32, 70, 88

ISBLANK(), 33

ISMARKED, 55

ISMOUSE(), 33

ISPRINTER(), 88

KEYBOARD, 33

KEYBOARD CLEAR, 33

KEYMATCH(), 34

L2BIN(), 88

Labels, 14

LASTKEY, 17

LASTKEY(), 32, 70, 88

LASTREC(), 88

Level, 18, 70, 105

LIKE(), 34

LIST USERS, 34

LOCK(), 34

Memo files, 7, 57

MEMOEDIT(), 89

MEMOLINE(), 90

MEMOREAD(), 90

MEMORY(), 35, 91

MEMOTRAN(), 91

MEMOWRIT(), 92

MESSAGE, 35

MLCOUNT(), 92

MLPOS(), 92

NETERR(), 93

NETNAME(), 93

Network functions, 36

NETWORK(), 36

NEXTKEY(), 70, 93

NOFOLLOW, 24

NOINIT, 24

NOLOG, 55, 56

NOMENU, 24

NOORGANIZE, 25

NOSAVE, 8, 56

ON BAR, 36

ON EXIT BAR, 37

ON EXIT MENU, 37

ON EXIT POPUP, 37

ON KEY LABEL, 38

ON MENU, 38

ON MOUSE, 38

ON PAD, 39

ON POPUP, 39

ON SELECTION POPUP, 40

ON SELECTION POPUP BLANK, 40

OPEN WINDOW, 20

Order, 106

PADPROMPT(), 40

Parameter passing, 17

PCOUNT(), 41, 94

Printer drivers, 13

PROCLINE(), 94

PROCNAME(), 94

PROTECT, 43

Queries, 7

READEXIT(), 95

READINSERT(), 95

READKEY, 17

READKEY(), 32

READVAR(), 96

REPLACE FROM ARRAY, 41

Reports, 12

Reports, Program Analyzer, 108

REQUIRED, 19

RESET, 55

RESTORE FROM, 42

RESTORE SCREEN, 42

RESTSCREEN(), 97

RLOCK(), 34

ROLLBACK, 55

RUN(), 42

SAVESCREEN(), 97

Screens, 11

SCROLL(), 97

Security, 43

SELECT(), 43

Sensitivity, 106

SET ("TRAP"), 52

SET CATALOG, 8, 44

SET CENTURY, 69

SET COLOR TO, 45

SET CONFIRM, 69

SET CONSOLE, 69

SET CURSOR, 69, 98

SET DATE, 69

SET DBTRAP, 45

SET DELETED, 69

SET DELIMITERS, 69

SET DESIGN, 45

SET DIRECTORY, 46

SET ENCRYPTION, 43

SET ESCAPE, 69

SET EXACT, 69

SET EXCLUSIVE, 69

SET FIELDS, 8, 47

SET FIXED, 69

SET FORMAT, 47

SET FUNCTION, 88

SET INSTRUCT, 48

SET INTENSITY, 69

SET KEY, 48, 98

SET LDCHECK, 49

SET LIBRARY, 49

SET MBLOCK, 50

SET MESSAGE, 50

SET PAUSE, 50

SET PRECISION, 50

SET PRINT, 69

SET PRINTER TO FILE, 51

SET RELATION, 99

SET SCOREBOARD, 69

SET SOFTSEEK, 69, 99

SET TITLE, 51

SET TRAP, 52

SET UNIQUE, 69

SET VIEW, 52

SET WRAP, 69, 99

SET("ATTRIBUTES"), 44

SET("BORDER"), 44

SET("CATALOG"), 8, 44

SET("DESIGN"), 45

SET("DIRECTORY"), 46

SET("DISPLAY"), 46

SET("ENCRYPTION"), 43

SET("INSTRUCT"), 48

SET("LIBRARY"), 49

SET("PAUSE"), 50

SET("PRECISION"), 51

SET("SQL"), 51

SET("TITLE"), 51

SET("TRAP"), 52

SET("VIEW"), 52

SET("WINDOW"), 53

SETCANCEL(), 100

SETCOLOR(), 100

SETPRC(), 100

SQL, 15, 53

Steps to Take, 57

STORE, 53

SUM(), 53

TAG(), 54

TAGCOUNT(), 54

TAGNO(), 8, 54

TEXT, 101

Text editor, using your own, 107

TONE(), 101

Transaction processing, 55

TYPE(), 102

UNIQUE(), 55

USE, 56

USER, 43

View, 106

View Rules, 108

WINDOW(), 56

WORD(), 102

	Welcome to FoxPro!
	Using the Migration Kit
	Migrating dBASE applications: an overview
	Steps to take

	Using dBASE database, memo, and index files
	DatabasesXE "Databases"§
	Memo files
	IndexesXE "Indexes"§

	Using dBASE queriesXE "Queries"§
	temp_file=SYS(3)+".dbf" &&Create unique filename with .DBF extension
	<<execute code>>
	delete file (temp_file)

	Running the Migration Tools
	Converting screens, reports, and labels
	The File ConverterXE "File Converter"§
	ScreenXE "Screens"§ files
	Converting FMTs and PRGs
	Using dBASE reportsXE "Reports"§
	REPORT FORM Namelist TO PRINT NOEJECT SUMMARY HEADING "Total Receipts"
	DO Namelist.frg WITH .T., .F., .T., "Total Receipts"

	Labels

	Addressing dBASE language compatibility issues
	Overview
	A note on dBASE IV Applications GeneratorXE "Applications Generator"§ applications
	Major compatibility issues
	Ways to fix possible problems
	SET COMPATIBLE
	Calling user-defined functions (UDFs)

	Non-syntax issues
	Parameter passingXE "Parameter passing"§
	Reading keystrokes
	Hard-coded file extensionsXE "File extensions"§

	Alphabetical list of potential dBASE IV issues
	@...GET MESSAGE
	@...GET XE "@...GET"§REQUIREDXE "@...GET REQUIRED"§XE "REQUIRED"§
	Level: 1
	dBASE IV behavior: When used with RANGE or VALID, the REQUIRED key word forces validation whether or not data has changed, even if you skip a field with the mouse.
	FoxPro behavior: Generates an error.
	Action: To require validation when data does not change but the user moves through the field, remove the REQUIRED key word and SET COMPATIBLE DB4 on.
	To require validation in cases where the user skips a field with the mouse, remove the REQUIRED key word. Then add a VALID clause to the READ that calls a UDF. Place all the tests for each GET in the UDF called by READ VALID.
	Comment: The mouse can also be turned off using the SET MOUSE command.
	Example: dBASE
	@ 2,2 SAY "Name:" GET custname VALID REQUIRED my_UDF()
	@ 6,2 SAY "Amount:" GET order_amt VALID REQUIRED ;
	order_amt <> 0
	READ
	FUNCTION my_udf
	IF LEN(custname) = 0
	<give user error message>
	RETURN .F.
	ELSE
	RETURN .T.
	ENDIF
	FoxPro

	@ 2,2 SAY "Customer name:" GET custname
	@ 6,2 SAY "Amount: " GET order_amt
	READ VALID my_udf()
	FUNCTION my_udf
	ret_val=.T.
	IF LEN(custname) = 0
	<give user error message>
	ret_val = .F.
	ENDIF
	IF order_amt = 0
	<give user different error message>
	ret_val = .F.
	ENDIF
	RETURN ret_val
	@...GETXE "@...GET"§ XE "@...GET"§OPEN WINDOWXE "OPEN WINDOW"§

	XE "@...GET OPEN WINDOW"§Level: 3
	dBASE IV behavior: dBASE opens a window, displays the memo text, and places the cursor in the predefined window when you move into the field. You must press Ctrl+Home to begin editing.
	FoxPro behavior: Same as dBASE, except FoxPro displays a memo marker behind the predefined window and places the cursor in this memo marker.
	Comment: If desired, you can change the coordinates of the window that is opened so that it does not cover the memo marker. Alternatively, you could use the EDIT or MODIFY MEMO commands in FoxPro, which gives you tremendous flexibility and control.
	Action: None required.
	@...SAY

	XE "@...SAY"§Level: Not flagged by the Program Analyzer.
	dBASE IV behavior: a) Output that extends beyond the lower right corner of the screen will be displayed, causing the screen to scroll upward.
	b) With SET STATUS ON, output can overwrite the status bar. Text that extends beyond the end of the status display wraps above the status bar, scrolling upward from that point.
	c) @SAY with the PICTURE key word rounds the rightmost digit.
	FoxPro behavior: a) Output that extends beyond the end of the screen is truncated.
	b) Output cannot overwrite the status bar. Text that extends beyond the end of the screen is truncated.
	c) When data is displayed using a PICTURE clause, the value is truncated, not rounded
	Action: SET COMPATIBLE DB4 ON.
	Comment: With COMPATIBLE set on, @SAY in FoxPro acts like @SAY in dBASE. These issues are mostly cosmetic so, the Program Analyzer does not flag the @SAY command.
	ACCESS()
	ACTIVATE MENUXE "ACTIVATE MENU"§

	Level: 2
	dBASE IV behavior: dBASE does not allow the user to click on disabled menu pads.
	FoxPro behavior: FoxPro allows the user to click on disabled menu pads. The effect is the same as if the user had pressed the escape key.
	Action: Place the ACTIVATE MENU command inside a DO...WHILE loop.
	Comment: The loop should run until the user clicks on the menu pad to exit the application.
	Example: dBASE
	ACTIVATE MENU my_menu
	FoxPro

	DO WHILE PAD() <>"Exit" &&Use the exit ACTIVATE MENU my_menu &&string from your ENDDO &&application
	ACTIVATE POPUPXE "ACTIVATE POPUP"§

	Level: 2
	dBASE IV behavior: dBASE does not allow the user to click on disabled popup bars.
	FoxPro behavior: FoxPro allows the user to click on disabled popup bars. The effect is the same as if the user had pressed the escape key.
	Action: Place the ACTIVATE POPUP command inside a DO...WHILE loop.
	Example: dBASE
	ACTIVATE POPUP my_popup
	FoxPro

	DO WHILE BAR() <> 5 &&Use the bar ACTIVATE MENU my_menu &&number from your END DO &&application
	ACTIVATE SCREENXE "ACTIVATE SCREEN"§, ACTIVATE WINDOWXE "ACTIVATE WINDOW"§

	Level: Not flagged by the Program Analyzer.
	dBASE IV behavior: By default, the cursor position is set to 0,0.
	FoxPro behavior: The cursor position retains the value it had prior to the ACTIVATE SCREEN or ACTIVATE WINDOW command.
	Action: SET COMPATIBLE DB4 ON.
	Comment: The cursor position will be set to 0,0 after issuing the ACTIVATE SCREEN or ACTIVATE WINDOW command. This issue is mostly cosmetic, so the Program Analyzer does not flag these commands.
	APPEND MEMOXE "APPEND MEMO"§

	Level: 3
	dBASE IV behavior: The file extension .TXT is assumed if none is specified.
	FoxPro behavior: If no file extension is specified, an error is generated.
	Action: SET COMPATIBLE DB4 ON.
	BARCOUNT()XE "BARCOUNT()"§ (version 2.0 only)

	Level: 2
	dBASE IV behavior: Returns the number of bars in a specified popup or in the active popup if no popup name is given.
	FoxPro behavior: Generates an error.
	Action: Replace BARCOUNT() with the FoxPro function CNTBAR().
	Comment: CNTBAR() in FoxPro requires that you specify the name of the popup.
	Example: dBASE
	num_bars=BARCOUNT(pop_name)
	FoxPro

	num_bars=CNTBAR(pop_name)
	BARPROMPT()XE "BARPROMPT()"§ (version 2.0 only)

	Level: 2
	dBASE IV behavior: Returns the prompt text of the specified bar in a specified popup, or in the current popup if none is given.
	FoxPro behavior: Generates an error.
	Action: Replace BARPROMPT() with the FoxPro function PRMBAR().
	Comment: PRMBAR() in FoxPro requires that you specify the name of the popup.
	Example: dBASE
	prmpt_txt=BARPROMPT(1)
	FoxPro

	prmpt_txt=PRMBAR(pop_name,1)
	BEGIN TRANSACTION

	See Transaction processing.
	BLANK (version 1.5 only)

	XE "BLANK (version 1.5 only)"§Level: 2
	dBASE IV behavior: Used to place spaces ("nulls") in all or selected fields in one or more records.
	FoxPro behavior: Generates an error.
	Action: Remove the BLANK command. Use the SCATTER MEMVAR BLANK and the GATHER MEMVAR command to "blank" a record. For individual fields, use the REPLACE command.
	Comment: FoxPro does not have full support for null values. Null values are fields filled with spaces and FoxPro can do this with date and character fields, though not numeric or logical fields. For null support in numeric fields, create a logical field that keeps track of whether the numeric field contains a value or is null.
	Example: FoxPro

	For dates:
	REPLACE inv_date WITH { / / }

	For character fields:
	REPLACE cust_name WITH SPACE(LEN(cust_name))

	For records (this blanks the current record; numeric fields are set to zero):
	SCATTER MEMVAR BLANK
	GATHER MEMVAR
	BROWSE

	XE "BROWSE"§Level: Not flagged by the Program Analyzer.
	dBASE IV behavior: Data are committed when the user exits a row.
	FoxPro behavior: Data are committed when the user exits a field.
	Action: None required.
	BROWSEXE "BROWSE"§ COMPRESSXE "COMPRESS"§

	XE "BROWSE COMPRESS"§Level: 3
	dBASE IV behavior: The COMPRESS key word compresses the header region to one line.
	FoxPro behavior: Not supported. The COMPRESS key word is ignored.
	Action: None required.
	Comment: COMPRESS in dBASE permits up to 19 rows to fit on one screen instead of 17. FoxPro 2.5 for Windows supports scalable fonts. Using a smaller point size will decrease row height and increase the number of records visible on one screen. In the example, the number of records visible goes from 25 (default font and type size) to 31 (Times New Roman, 6 pt.).
	Example: dBASE
	BROWSE COMPRESS
	FoxPro

	BROWSE FONT 'Times New Roman', 6
	BROWSEXE "BROWSE"§ NOFOLLOWXE "NOFOLLOW"§

	XE "BROWSE NOFOLLOW "§Level: 3
	dBASE IV behavior: The NOFOLLOW key word prevents the record pointer from following a record to its new position in the index after you edit the key fields.
	FoxPro behavior: The NOFOLLOW key word is ignored. In FoxPro BROWSE always behaves as if NOFOLLOW has been specified. Neither the changed record nor the record pointer are moved after a change to a key field.
	Action: None required.
	Comment: In cases where you want to simulate a dBASE BROWSE without NOFOLLOW, you can use the SHOW WINDOW <window name> REFRESH command. This will "move" the updated record. The record pointer can be moved in the same routine.
	BROWSE XE "BROWSE "§NOINITXE "NOINIT"§

	XE "BROWSE NOINIT "§Level: 3
	dBASE IV behavior: Redisplays the previous BROWSE window configuration.
	FoxPro behavior: Not supported. The NOINIT key word is ignored.
	Action: None required. Specifying the LAST key word is identical to using NOINIT.
	Example: dBASE
	BROWSE NOINIT
	FoxPro

	BROWSE LAST
	BROWSEXE "BROWSE"§ NOMENUXE "NOMENU"§

	XE "BROWSE NOMENU "§Level: 3
	dBASE IV behavior: The NOMENU option suppresses the menu bar entirely.
	FoxPro behavior: The NOMENU option suppresses only the Browse pad in the menu bar.
	Action: To suppress the menus entirely, use the SET SYSMENU OFF command prior to the BROWSE command, and SET SYSMENU ON or SET SYSMENU AUTOMATIC afterward.
	Example: dBASE
	BROWSE NOMENU
	FoxPro

	SET SYSMENU OFF
	BROWSE
	SET SYSMENU ON
	BROWSEXE "BROWSE"§ NOORGANIZEXE "NOORGANIZE"§ XE "BROWSE NOORGANIZE "§

	Level: 2
	dBASE IV behavior: The NOORGANIZE key word (version 1.5 only) suppresses the Organize menu pad in the menu bar.
	FoxPro behavior: Generates an error.
	Action: Remove this key word.
	Comment: FoxPro does not have a menu pad called Organize. Commands similar to those on the Organize menu are found under the Database and Browse pads in FoxPro. The FoxPro menus are easily customizable. Individual menu items as well as entire pads can be disabled or removed. Refer to the section on menus in the User's Guide (included the FoxPro 2.5 documentation).
	CALLXE "CALL"§

	Level: 1
	dBASE IV behavior: CALL accepts an expression list.
	FoxPro behavior: CALL accepts only one expression.
	Action: Redesign binary routines into several routines and break the single dBASE CALL into several FoxPro CALL commands.
	CALL()

	XE "CALL()"§Level: 1
	dBASE IV behavior: This function provides an alternative to the CALL command for calling binary programs loaded into memory with the LOAD command.
	FoxPro behavior: Generates an error.
	Action: Substitute the CALL command and (if necessary) modify the called routine.
	Comment: The CALL command in FoxPro works the same as in dBASE IV. You might have to change the number of parameters or modify the binary routine to take into account the fact that the routine can supply a return value to the CALL function. When you use the CALL command, the binary routine must return values by changing the values of the memory variables passed as parameters.
	CATALOG()XE "CATALOG()"§

	Level: 2
	dBASE IV behavior: Returns the name of the active catalog file.
	FoxPro behavior: Generates an error.
	Action: Remove this function.
	CERROR()

	XE "CALL()"§Level: 2
	dBASE IV behavior: Undocumented function that returns the number of the last compiler error.
	FoxPro behavior: Generates an error.
	Action: Remove this function.
	CHANGE()

	See Network functions.
	Comparison operators

	XE "Comparison operators"§Level: 2
	dBASE IV behavior: The >=XE " >="§ (greater than or equal to) and <=XE "<="§ (less than or equal to) operators can also be written as => and =<.
	FoxPro behavior: Placing the equal sign before a less than character or greater than character (for example, =>XE " =>"§ or =<XE "=<"§) yields the "Missing operand" error message.
	Action: Replace occurrences of => with >= and =< with <=.
	COMPLETED()

	See Transaction processing.
	CONVERT

	See Network functions.
	COPY TO ARRAY

	XE "Comparison operators"§Level: 4
	dBASE IV behavior: In the FIELDS clause, the same field can be included more than once.
	FoxPro behavior: Including a field more than once in the FIELDS clause generates an error.
	Action: Remove multiple references to a single field.
	CTOD()

	XE "CTOD()"§Level: 3
	dBASE IV behavior: If the input to the CTOD function is a character string in which the month is greater than 12 or the day is greater than the number of days in the specified month, dBASE IV carries out a date addition and returns the resulting legitimate date. For example, CTOD("13/32/93") yields the date 02/01/94.
	FoxPro behavior: FoxPro accepts only legitimate dates as arguments. CTOD returns an empty date, which is displayed as " / / " if the input is not a legitimate date.
	Action: None required.
	Comment: You may wish to check the value return by CTOD() using the EMPTY function to make sure a legitimate date was entered.
	DEFINE BAR
	DEFINE MENU

	XE "DEFINE MENU"§Level: 4
	dBASE IV behavior: DEFINE MENU in dBASE IV version 1.0 adds an extra space to each pad (and to the highlight bar that indicates the selected pad). DEFINE PAD without coordinates places one space between pads, resulting in up to three spaces between pads on the screen. dBASE IV versions 1.1 and 1.5 do not add leading and trailing spaces but do add one space between pads.
	MESSAGE expressions are output to the active window (see MESSAGE).
	FoxPro behavior: Same as dBASE IV 1.0. An extra space is added to each pad.
	MESSAGE expressions are output to the desktop (see MESSAGE).
	Action: Optionally add the NOMARGIN key word to the DEFINE MENU command to suppress the extra spaces and match the appearance of the menu in dBASE IV 1.1 or 1.5.
	Comment: Pads on bar menus written in dBASE IV version 1.1 or 1.5 might not all fit on one line with the extra spaces.
	Example: dBASE (1.1 or 1.5 only)
	DEFINE MENU Main
	FoxPro

	DEFINE MENU Main NOMARGIN
	DEFINE PAD
	DEFINE POPUP
	DESCENDING()XE "DESCENDING()"§ (version 1.5 only)

	Level: 1
	dBASE IV behavior: The DESCENDING function evaluates to .T. if an index accesses records in descending order, or .F. otherwise.
	FoxPro behavior: Generates an error.
	Action: The DESCENDING function must be removed.
	DISPLAY USERS
	END TRANSACTION

	See Transaction processing.
	ERROR()

	XE "ERROR()"§Level: 3
	dBASE IV behavior: ERROR() returns the number corresponding to the error message trapped by the ON ERROR command.
	FoxPro behavior: Behaves like dBASE, but often returns error numbers different from dBASE error numbers.
	Action: Use the appropriate FoxPro error number. Check Appendix D to see which dBASE error messages correspond to which FoxPro error numbers. Refer to the FoxPro Developer's Guide for a list of all FoxPro error messages.
	Comment: You might be able to remove parts of your error handling code because some dBASE errors will never be generated in FoxPro. For example, FoxPro does not use error 76 (" -: Concatenated string too large") or 77 because FoxPro supports character strings of up to 65K characters.
	Note that many error numbers used for the same error in FoxPro and dBASE have different error messages. Thus, an error-trapping routine that tests the MESSAGE function rather than the ERROR function may might to respond to many common errors. See Appendixes C and D.
	FCREATE()XE "FCREATE()"§ and FOPEN()XE "FOPEN()"§

	Level: 2
	dBASE IV behavior: The second input to the FOPEN and FCREATE functions, which represents the file attributes, must be "R" (read-only), "W" (write-only), "A" (append-only), "RW" or "WR (read and write), or "RA" or "AR" (read and append).
	FoxPro behavior: The second input to the FOPEN and FCREATE functions is a numeric code that represents the file attributes and also allows you to specify buffered or unbuffered access.
	Action: Replace dBASE file attributes with FoxPro attribute number.
	Example: dBASE
	file_handle = FCREATE("example.txt", "R")
	FoxPro

	file_handle = FCREATE("example.txt", "1")

	MS-DOS Attribute(s)
	FoxPro Attribute Number
	dBASE Attribute Code
	Read/write (default)
	0
	RW or WR
	Append only
	0*
	A
	Read and append
	0*
	RA or AR
	Read only
	1
	R
	Hidden
	2
	(not available)
	Read Only/Hidden
	3
	(not available)
	System
	4
	(not available)
	Read Only/System
	5
	(not available)
	System/Hidden
	6
	(not available)
	Read Only/Hidden/System
	7
	(not available)
	FDATE()XE "FDATE()"§ (version 1.5 only)
	Level: 2
	dBASE IV behavior: The FDATE function returns the date stamp on the disk file specified as input.
	FoxPro behavior: Generates an error.
	Action: Replace with the ADIR function, or use UDF in FOXPROC.PRG.
	Comment: One function in FoxPro, ADIR(), returns file date, as well as size, time and attributes. A file or file skeleton can be passed as arguments. The return data is automatically placed into an appropriately sized array. The third column stores file date information.
	A UDF called FDATE() in FOXPROC.UDF allows you to leave instances of the dBASE function FDATE() unchanged if you wish. See the section titled "Calling user-defined functions" above.
	Example: dBASE
	file_date = FDATE('customer.dbf')
	FoxPro

	temp = ADIR(dir_array,'c:foxprowemployee.dbf')
	file_date = dir_array(3)
	FGETS()

	XE "FGETS()"§Level: 2
	dBASE IV behavior: You can specify the end-of-line character in the third argument of the FGETS and FPUTS functions (which is by default, a carriage return and linefeed).
	FoxPro behavior: FGETS and FPUTS functions process only text files that use a carriage return and line feed as line-end characters.
	Action: If a file contains line-end characters other than a carriage return (ASCII 13) or line feed (ASCII 10), perform a global search and replace on the file.
	Alternatively, replace FGETS with an FREAD loop that reads and tests each character until it finds the end-of-line character.
	FLDCOUNT()XE "FLDCOUNT()"§ (version 1.5 only)

	Level: 2
	dBASE IV behavior: This function returns the number of fields in a database.
	FoxPro behavior: Generates an error.
	Action: Replace with the equivalent FoxPro function FCOUNT. Or use UDF in FOXPROC.PRG.
	Comment: FCOUNT works exactly like FLDCOUNT.
	A UDF called FLDCOUNT() in FOXPROC.UDF allows you to leave instances of the dBASE function FLDCOUNT() unchanged if you wish. See the section titled "Calling user-defined functions" above.
	Example: dBASE
	FLDCOUNT('customer.dbf')
	FoxPro

	FCOUNT('customer.dbf')
	FLDLIST()XE "FLDLIST()"§ (version 2.0 only)

	Level: 1
	dBASE IV behavior: Returns the fields of a SET FIELDS TO list, or an individual field if the optional numeric argument is included.
	FoxPro behavior: Generates an error.
	Action: Replace FLDLIST() with SET("FIELDS", 1).
	Comment: See SET FIELDS for more information on the behavior of a field list when the SET FIELDS list spans more than one work area.
	FOPEN()
	FOR()XE "FOR()"§ (version 1.5 only)

	Level: 2
	dBASE IV behavior: The FOR function returns the FOR clause used to create a conditional index tag.
	FoxPro behavior: Generates an error.
	Action: Replace with the equivalent FoxPro function SYS(2021) or use UDF in FOXPROC.PRG.
	Comment: A UDF called FOR() in FOXPROC.UDF allows you to leave instances of the dBASE function FOR() unchanged if you wish. See the section titled "Calling user-defined functions" above.
	Example: dBASE
	for_clause = FOR('cust_no.mdx',1)
	FoxPro

	for_clause = SYS(2021, 1)
	FPUTS()

	XE "FPUTS()"§Level: 2
	dBASE IV behavior: You can specify the end-of-line character in the third argument of the FPUTS and FGETS functions (which is, by default, a carriage return and linefeed).
	FoxPro behavior: FPUTS and FGETS functions process only text files that use a carriage return and linefeed as line-end characters.
	Action: If a file contains line-end characters other than a carriage return (ASCII 13) or linefeed (ASCII 10), perform a global search and replace on the file.
	Alternatively, to write a file with nonstandard end-of-line characters, use FWRITE to write the string that contains the line of text plus the end of line characters.
	FSIZE()

	XE "FSIZE() "§Level: 2
	dBASE IV behavior: The FSIZE function returns the size of the file specified as input.
	FoxPro behavior: The FSIZE function returns the size of the field specified as input.
	Action: Replace with the ADIR function.
	Comment: One function in FoxPro, ADIR(), returns file size, as well as date, time and attributes. A file or file skeleton can be passed as arguments. The return data is automatically placed into an appropriately sized array. The second column stores file size information.
	Example: dBASE
	file_size = FSIZE(customer.dbf)
	FoxPro

	temp = ADIR(dir_array,'c:foxprowemployee.dbf')
	file_size = dir_array(2)
	FTIME() XE "FTIME() "§(version 1.5 only)

	Level: 2
	dBASE IV behavior: The FTIME function returns the time stamp on the disk file specified as input.
	FoxPro behavior: Generates an error.
	Action: Replace with the ADIR function, or use UDF in FOXPROC.PRG.
	Comment: One function in FoxPro, ADIR(), returns file time, as well as date, size and attributes. A file or file skeleton can be passed as arguments. The return data is automatically placed into an appropriately sized array. The fourth column stores file time information.
	A UDF called FTIME() in FOXPROC.UDF allows you to leave instances of the dBASE function FTIME() unchanged if you wish. See the section titled "Calling user-defined functions" above.
	Example: dBASE
	file_time = FTIME('customer.dbf')
	FoxPro

	temp = ADIR(dir_array,'c:foxprowemployee.dbf')
	file_time = dir_array(4)
	HOME()XE "HOME()"§

	Level: 2
	dBASE behavior: Returns home directory of dBASE IV.
	FoxPro behavior: Generates and error.
	Action: Replace with the equivalent function SYS(2004)
	ID()XE "ID()"§

	Level: 1
	dBASE behavior: Returns name of current user on a multiuser system.
	FoxPro behavior: Generates an error.
	Action: Substitute a test based on the SYS(0) function.
	Comment: SYS(0) returns the network computer name and number when FoxPro is running on a network. A machine number and name must first be assigned by the network software and the network shell must be loaded. On Novell networks, add the following to the system login script:
	MACHINE="%USER_ID,%P_STATION,%LOGIN_NAME"
	If FoxPro is not running on a network or a machine number and name haven't been assigned by the network, SYS(0) returns a string of spaces (10 in FoxPro for MS-DOS or 15 in FoxPro for Windows), followed by a pound sign (#), space, and 0. When the single-user version of FoxPro is running, SYS(0) evaluates to 1.
	INKEY()XE "INKEY()"§, LASTKEY()XE "LASTKEY()"§, READKEY()XE "READKEY()"§

	Level: 3
	dBASE behavior: FoxPro and dBASE, in many cases, map keys to different values.
	FoxPro behavior: These functions work the same way as in dBASE, but FoxPro key values may differ, so unmodified dBASE programs may not behave the same way in FoxPro as they did before.
	Action: FoxPro reads key assignments from a macro file with the extension .FKY. Use the dBASE.FKY macro file, included on the Migration Kit disk, so FoxPro keystrokes are mapped to dBASE keystrokes. Then include the command RESTORE MACROS FROM dBASE.FKY in your program.
	Alternately, you could change your program code so it uses FoxPro's "native" key assignments. See the table in Appendix G for a list of these values.
	ISBLANK()

	XE "ISBLANK()"§Level: 2
	dBASE IV behavior: The ISBLANK function returns the null status of any variable.
	FoxPro behavior: Generates an error.
	Action: Replace ISBLANK with the FoxPro EMPTY function or use UDF in FOXPROC.PRG
	Comment: ISBLANK in dBASE and EMPTY in FoxPro are the same when dealing with date and character fields. With numeric fields, EMPTY returns .T. when the field has no value (is null) or when the value is 0. ISBLANK in dBASE would return .T., meaning the value is null.
	For null support in numeric fields, create a logical field that keeps track of whether the numeric field contains a value or is null.
	A UDF called ISBLANK() in FOXPROC.UDF allows you to leave instances of the dBASE function ISBLANK() unchanged if you wish. See the section titled "Calling user-defined functions" above.
	Example: dBASE
	null_state = ISBLANK(inv_date)
	FoxPro

	null_state = EMPTY(inv_date)
	ISMARKED()

	See Transaction processing.
	ISMOUSE()XE "ISMOUSE()"§ (version 2.0 only)

	Level: 2
	dBASE IV behavior: Returns True (.T.) if a mouse driver is installed.
	FoxPro behavior: Generates an error.
	Action: Remove the function.
	Comment: There is no equivalent in FoxPro.
	KEYBOARDXE "KEYBOARD"§ CLEARXE "CLEAR"§

	XE "KEYBOARD CLEAR "§Level: 2
	dBASE IV behavior: The CLEAR key word clears the keyboard buffer before executing the KEYBOARD command.
	FoxPro behavior: Generates an error.
	Action: Remove CLEAR and place the CLEAR TYPEAHEAD command before the KEYBOARD command.
	Example: dBASE
	KEYBOARD cust_name + address + city + state CLEAR
	FoxPro

	CLEAR TYPEAHEAD
	KEYBOARD cust_name + address + city + state
	KEYMATCH()XE "KEYMATCH()"§ (version 2.0 only)

	Level: 2
	dBASE IV behavior: Searches a specified index tag for a given key without changing the active index or moving the record pointer.
	FoxPro behavior: Generates an error.
	Action: Remove the function.
	Comment: There is no equivalent in FoxPro.
	LIKE()

	XE "LIKE()"§Level: 3
	dBASE IV behavior: Trailing blanks in both the pattern and target are trimmed before the comparison is made.
	FoxPro behavior: The pattern and target are both used as is and trailing blanks are significant.
	Action: Use the RTRIM function or SET COMPATIBLE DB4 on.
	Example: dBASE
	LIKE(var1,var2)
	FoxPro

	LIKE(RTRIM(var1),var2)
	LIST USERSXE "LIST USERS"§

	Level: 2
	dBASE behavior: Identifies the workstations currently logged into a dBASE networking environment.
	FoxPro behavior: Not supported. LIST USERS is ignored.
	Action: None required.
	Comment: See Appendix E for alternatives.
	LKSYS

	See Network functions.
	LOCK()XE "LOCK()"§, RLOCK()XE "RLOCK()"§

	Level: 2
	dBASE IV behavior: By default, you can lock more than one record at a time with these functions.
	FoxPro behavior: By default, FoxPro allows locking one record at a time.
	Action: To permit multiple locks, use the SET MULTILOCKS ON command. Add this command to the main startup program for network applications.
	Comment: With SET MULTILOCKS ON, the ability to place multiple record locks is the same in both FoxPro and dBASE IV.
	Example: FoxPro
	SET MULTILOCKS ON
	MEMORY()XE "MEMORY()"§ (version 2.0 only)

	Level: 2
	dBASE IV behavior: Allows you to include a parameter of from 0 to 7. Each value represents a region of memory that MEMORY() will return.
	FoxPro behavior: Generates an error if you include a parameter.
	Action: Replace the MEMORY() command with the corresponding FoxPro commands as shown in the table below.
	dBASE
	FoxPro equivalent
	MEMORY(0)
	SYS(1001)+SYS(1016)
	MEMORY(1)
	No equivalent
	MEMORY(2)
	SYS(12)
	MEMORY(3)
	SYS(1001)
	MEMORY(4)
	SYS(23)
	MEMORY(5)
	SYS(23)
	MEMORY(6)
	SYS(1016)
	MEMORY(7)
	No equivalent
	MESSAGEXE "MESSAGE"§XE "@...GET MESSAGE"§ (@GET, DEFINE BARXE "DEFINE BAR"§, DEFINE MENUXE "DEFINE MENU"§ DEFINE PADXE "DEFINE PAD"§, DEFINE POPUPXE "DEFINE POPUP"§)

	Level: 2
	dBASE IV behavior: MESSAGE expressions are output to the active window.
	FoxPro behavior: MESSAGE expressions are output to the desktop.
	Action: There are three ways to resolve this issue:
	a) Use the SET MESSAGE WINDOW command to output the message expression to the window of your choice.
	b) Shorten windows by one line so the message on the desktop becomes visible.
	c) Use the desktop instead of a window (using the SAVE SCREEN and RESTORE SCREEN commands to simulate use of windows).
	Comment: This problem only occurs if a window is defined that covers the last line of the screen where the message is output.
	NETWORK()

	XE "NETWORK()"§Level: 2
	dBASE IV behavior: This function returns .T. only if dBASE is currently running on a network.
	FoxPro behavior: In FoxPro 2.5, NETWORK always returns .T.. In FoxPro 2.0, the single-user version will evaluate network to .F. while the multiuser version will return .T..
	Action: Substitute a test based on the SYS(0) function.
	Comment: SYS(0) returns the network computer name and number when FoxPro is running on a network. A machine number and name must first be assigned by the network software and the network shell must be loaded. On Novell networks, add the following to the system login script:
	MACHINE="%USER_ID,%P_STATION,%LOGIN_NAME"
	If FoxPro is not running on a network or a machine number and name haven't been assigned by the network, SYS(0) returns a string of 15 spaces, followed by a pound sign (#), space, and zero. When the single-user version of FoxPro is running, SYS(0) evaluates to 1.
	Example: dBASE
	on_network = NETWORK()
	FoxPro

	on_network = LEFT(SYS(0),10)<>SPACE(10)
	Network functions

	XE "Network functions"§Level: 1
	dBASE IV behavior: dBASE IV supports a mechanism for detecting modifications to the current record on a network, using the CONVERT, CHANGE, LKSYS, and USER commands and functions.
	FoxPro behavior: FoxPro ignores the CONVERT command. The CHANGE, LKSYS, and USER functions generate errors.
	Action: Remove the CHANGE, LKSYS, and USER functions. Lock detection schemes that depend on these functions need to be written using other methods in FoxPro.
	ON BARXE "ON BAR"§ (version 2.0 only)

	Level: 2
	dBASE IV behavior: Executes a command when a specified popup bar is highlighted.
	FoxPro behavior: Allows execution of an ACTIVATE POPUP or ACTIVATE MENU statement when a specified popup bar is selected.
	Action: If it is necessary to perform an action other than ACTIVATE POPUP or ACTIVATE MENU, replace ON BAR with ON SELECTION BAR in FoxPro.
	ON EXIT BARXE "ON EXIT BAR"§ (version 2.0 only)

	Level: 2
	dBASE IV behavior: Executes a command when the cursor (highlight) leaves a specified bar.
	FoxPro behavior: Generates an error.
	Action: Remove the command.
	Comment: There is no equivalent in FoxPro.
	ON EXIT MENUXE "ON EXIT MENU"§ (version 2.0 only)

	Level: 2
	dBASE IV behavior: Executes a command when the cursor (highlight) leaves a specified menu.
	FoxPro behavior: Generates an error.
	Action: Remove the command.
	Comment: There is no equivalent in FoxPro.
	ON EXIT PAD

	Level: 2
	dBASE IV behavior: Executes a command when the cursor (highlight) leaves a specified bar.
	FoxPro behavior: Generates an error.
	Action: Remove the command.
	Comment: There is no equivalent in FoxPro.
	ON EXIT POPUPXE "ON EXIT POPUP"§ (version 2.0 only)

	Level: 2
	dBASE IV behavior: Executes a command when the cursor (highlight) leaves a specified popup.
	FoxPro behavior: Generates an error.
	Action: Remove the command.
	Comment: There is no equivalent in FoxPro.
	ON KEY LABELXE "ON KEY LABEL"§

	Level: 3
	dBASE IV behavior: Uses "-" character in multi-key labels.
	FoxPro behavior: Uses "+" character in mulit-key labels.
	Action: Replace any "-" (dash) characters in key labels and replace them with "+" (plus sign) characters.
	Comment: dBASE and FoxPro key labels are the same except for the concatenating character in combination keystrokes.
	Example: dBASE
	ON KEY LABEL ALT-A DO myprog.prg
	FoxPro

	ON KEY LABEL ALT+A DO myprog.prg && change "-" to "+"
	ON MENUXE "ON MENU"§ (version 2.0 only)

	Level: 2
	dBASE IV behavior: Executes a command when any popup bar without an ON PAD handler is highlighted.
	FoxPro behavior: Generates an error.
	Action: Replace ON MENU with ON SELECTION MENU in FoxPro.
	Comment: ON SELECTION MENU in FoxPro is functionally identical to ON MENU in dBASE IV except that ON SELECTION MENU executes the specified command when a bar is selected whereas ON MENU in dBASE IV executes the specified command when a bar is highlighted.
	Example: dBASE
	ON MENU File DO my_prog
	FoxPro

	ON SELECTION MENU File DO my_prog
	ON MOUSEXE "ON MOUSE"§ (version 2.0 only)

	Level: 2
	dBASE IV behavior: Executes a given command when the left mouse button is clicked.
	FoxPro behavior: Generates an error.
	Action: Replace ON MOUSE with ON KEY LABEL LEFTMOUSE.
	Comment: ON MOUSE is most typically used in dBASE IV to create user-friendly controls such as check boxes and radio buttons. Although the dBASE IV approach will work in FoxPro, you might consider substituting the code that supports these controls with FoxPro @..GET push buttons, radio buttons, check boxes, lists, etc.
	Example: dBASE
	ON MOUSE DO mouse_proc
	FoxPro

	ON KEY LABEL LEFTMOUSE DO mouse_proc
	ON PADXE "ON PAD"§ (version 2.0 only)

	Level: 2
	dBASE IV behavior: Executes any command when a specified menu pad is highlighted.
	FoxPro behavior: Allows execution of an ACTIVATE POPUP or ACTIVATE MENU statement when a specified menu pad is highlighted.
	Action: If it is necessary to perform an action other than ACTIVATE POPUP or ACTIVATE MENU, replace ON PAD with ON SELECTION PAD in FoxPro.
	Comment: ON SELECTION PAD in FoxPro is functionally identical to ON PAD in dBASE IV except that ON SELECTION PAD executes the specified command when a pad is selected whereas ON PAD in dBASE IV executes the specified command when a pad is highlighted.
	Example: dBASE
	ON PAD bachelor OF type DO bach_pad
	FoxPro

	ON SELECTION PAD bachelor OF type DO bach_pad
	ON POPUPXE "ON POPUP"§ (version 2.0 only)

	Level: 2
	dBASE IV behavior: Executes a command when any popup bar without an ON BAR handler is highlighted.
	FoxPro behavior: Generates an error.
	Action: Replace ON POPUP with ON SELECTION POPUP in FoxPro.
	Comment: ON SELECTION POPUP in FoxPro is functionally identical to ON POPUP in dBASE IV except that ON SELECTION POPUP executes the specified command when a bar is selected whereas ON POPUP in dBASE IV executes the specified command when a bar is highlighted.
	Example: dBASE
	ON POPUP just DO it
	FoxPro

	ON SELECTION POPUP just DO it
	ON SELECTION POPUP

	XE "ON SELECTION POPUP"§Level: 3
	dBASE IV behavior: Any data displayed or windows activated by the ON SELECTION POPUP command may cover the popup. After this command or procedure terminates, the popup will reappear on the screen.
	FoxPro behavior: A popup remains on top of windows or data displayed when FoxPro executes the procedure named in the ON SELECTION POPUP command.
	Action: None required.
	Comment: If desired, add a HIDE POPUP command to the procedure called by ON SELECTION POPUP. The popup reappears automatically when the command or procedure terminates and the popup regains control.
	Setting COMPATIBLE on will also result in the same behavior as dBASE.
	Example: dBASE
	ON SELECTION POPUP edit_pop DO edit_proc
	PROCEDURE edit_proc
	<procedure code>
	FoxPro

	ON SELECTION POPUP edit_pop DO edit_proc
	
	PROCEDURE edit_proc
	HIDE POPUP edit_pop
	<procedure code>
	SHOW POPUP edit_pop
	ON SELECTION POPUP BLANK

	XE "ON SELECTION POPUP BLANK"§Level: 2
	dBASE IV behavior: The optional BLANK key word clears the pop-up menu from the screen before executing any commands. The pop-up menu will be redrawn upon return from the executed command.
	FoxPro behavior: Generates an error.
	Action: Remove the BLANK key word.
	Comment: See ON SELECTION POPUP.
	PADPROMPT()XE "PADPROMPT()"§ (version 2.0 only)

	Level: 2
	dBASE IV behavior: Returns the prompt text of the specified pad in a specified menu, or in the current menu if none is given.
	FoxPro behavior: Generates an error.
	Action: Replace PADPROMPT() with PRMPAD().
	Comment: PRMPAD() in FoxPro requires that you specify the name of the menu.
	Example: dBASE
	pr_txt=PADPROMPT("File")
	FoxPro

	pr_txt=PRMAD("menu_1","File")
	PCOUNT()XE "PCOUNT()"§ (version 1.5 only)

	Level: 2
	dBASE IV behavior: The PCOUNT function evaluates to the number of parameters passed to a user-defined function.
	FoxPro behavior: Generates an error.
	Action: Replace PCOUNT with the PARAMETERS function or use UDF in FOXPROC.PRG.
	Comment: A UDF called PCOUNT() in FOXPROC.UDF allows you to leave instances of the dBASE function PCOUNT() unchanged if you wish. See the section titled "Calling user-defined functions" above.
	Example: dBASE
	param_no = PCOUNT()
	FoxPro

	param_no = PARAMETERS()
	PROTECT
	REPLACE FROM ARRAY

	XE "REPLACE FROM ARRAY"§Level: 2
	dBASE IV behavior: Replaces the contents of one or more records with the corresponding fields in a two-dimensional array.
	FoxPro behavior: Generates an error.
	Action: Replace with the commands SCATTER and GATHER.
	Comment: The SCATTER command creates memory variables from fields. GATHER writes those memory variables back to the database. These commands are faster than COPY TO and REPLACE FROM, plus, the variables created are named based on the field names, rather than becoming a numbered element in an array.
	If this command is used to replace multiple records, create a loop using the GATHER command.
	Example: dBASE
	COPY TO ARRAY rec_array
	<<@ SAYs and GETS>>
	READ
	REPLACE FROM ARRAY rec_array
	FoxPro

	SCATTER MEMVAR
	<<@ SAYs and GETS>>
	READ
	GATHER MEMVAR
	RESET

	See Transaction processing.
	RESTORE FROMXE "RESTORE FROM"§

	Level: 3
	dBASE IV behavior: A .MEM extension is assumed if none is supplied.
	FoxPro behavior: If no extension is specified, FoxPro will search for the filename without an extension.
	Action: Add an explicit extension.
	RESTORE SCREENXE "RESTORE SCREEN"§

	Level: 2
	dBASE IV behavior: The SAVE SCREEN command saves a screen image in memory but not in a memory variable. RESTORE SCREEN can be executed from anywhere in the application to restore the screen image.
	FoxPro behavior: The SAVE SCREEN command stores the screen image to a memory variable. The memory variable must be available in the procedure or function where the RESTORE SCREEN command is issued.
	Action: If SAVE SCREEN and RESTORE screen are in the same procedure or function, no change is necessary. If not, declare the FoxPro memory variable public before executing the SAVE SCREEN command.
	Comment: If the screen is saved to a private variable, RESTORE SCREEN will generate a "Variable not found" error message if issued from a procedure or function different from where SAVE SCREEN was issued.
	Example: dBASE
	SAVE_SCREEN TO screen_var
	FoxPro

	PUBLIC screen_var
	SAVE SCREEN to screen_var
	RLOCK()

	See LOCK()
	ROLLBACK

	See Transaction processing.
	ROLLBACK ()

	See Transaction processing.
	RUN()XE "RUN()"§

	Level: 2
	dBASE behavior: Runs an external program.
	FoxPro behavior: Generates an error.
	Action: Substitute the RUN command.
	Security

	XE "Security"§Level: 1
	dBASE IV behavior: Security in dBASE IV is implemented with the PROTECTXE "PROTECT"§, ACCESSXE "ACCESS"§, USERXE "USER"§, SET ENCRYPTIONXE "SET ENCRYPTION"§, and SET("ENCRYPTION")XE "SET("ENCRYPTION")"§ commands and functions.
	FoxPro behavior: FoxPro ignores the SET ENCRYPTION command. The ACCESS function always returns 0. The USER function and PROTECT command generate an errors.
	Action: Remove the USER function. Copy any encrypted databases to unencrypted files in dBASE before you begin using FoxPro.
	Comment: If the application requires a detailed security system or file encryption, you can design your own or you can use third-party products.
	SELECT()

	XE "SELECT()"§Level: 2
	dBASE IV behavior: In version 1.1, this function takes no inputs and returns the highest numbered available work area.
	In version 1.5, when evaluated with no inputs, it returns the lowest numbered available work area. With an alias specified as input, it returns the number of the work area in which a database with the specified alias is open.
	Also, if the current work area is changed by a UDF, it changes back automatically after the UDF is executed.
	FoxPro behavior: SELECT() and SELECT(0) return the number of the selected work area.
	SELECT(1) returns the highest numbered available work area.
	In FoxPro, if the current work area is changed in a UDF, that will become the current work area after the UDF has executed unless another is explicitly selected.
	Action: When using SELECT to open a database in an available work area, change the syntax to SELECT(1) to avoid closing the database already open in the current work area.
	To select the work area of a particular database, use the SELECT command.
	Or SET COMPATIBLE on and SELECT() will behave as it does in dBASE.
	Comment: If your program tests the value of SELECT and depends on numbered work areas, you might need to change the program's logic to take account of the FoxPro SELECT function returning the highest available work area rather than the lowest.
	Example: dBASE
	SELECT()
	FoxPro

	SELECT(1)
	SET("ATTRIBUTES")XE "SET("ATTRIBUTES")"§

	Level: 2
	dBASE IV behavior: SET("ATTRIBUTES") returns a string consisting of the seven color pairs established with the SET COLOR OF command.
	FoxPro behavior: Generates an error.
	Action: In applications generated by the dBASE Applications Generator, this code can usually be commented out.
	If a program relies on finding out colors set using the SET COLOR TO command, you should write code that saves these colors to memory variables after the SET COLOR TO command is issued. These memory variables can then be interrogated instead of using the SET("ATTRIBUTES") function.
	Comment: SET COLOR TO acts the same in dBASE and FoxPro, so programs that manipulate color usually behave the same way as well.
	FoxPro will return dBASE II-style color information from the SYS(2001,'COLOR') or SET("COLOR") functions.
	SET("BORDER")XE "SET("BORDER")"§

	Level: 3
	dBASE IV behavior: Returns border type key word.
	FoxPro behavior: Returns a string of ten characters which compose the border.
	Action: Parse the return string and use the ASC() function, which returns the ASCII number. Check to see whether the ASCII code is of single, double, or panel type.
	SET CATALOG

	XE "SET CATALOG"§Level: 1
	dBASE behavior: The catalog is a database file with the extension .CAT and contains a record for each file in an application. The following catalog-related commands and functions are supported in dBASE:
	SET CATALOG TO <catalog> establishes the current catalog.
	SET CATALOG ON | OFF activates and deactivates the catalog.
	FoxPro behavior: Not supported. Catalog commands are ignored.
	Action: Use ADIR() to find files matching a particular file skeleton.
	SET("CATALOG")XE "SET("CATALOG")"§

	Level: 2
	dBASE IV behavior: Returns ON or OFF.
	FoxPro behavior: Generates an error.
	Action: Remove this function. It is not supported in FoxPro.
	SET COLOR TO

	XE "SET COLOR TO"§Level: 3
	dBASE IV behavior: SET COLOR TO (with no color pairs listed) resets the screen colors to black and white.
	FoxPro behavior: SET COLOR TO leaves the current screen colors unchanged.
	Action: None required. To get a monochrome color scheme in FoxPro, use the code in the example below.
	Example: dBASE
	SET COLOR TO
	FoxPro

	SET COLOR TO W/N, N/W, N
	or
	SET COLOR SCHEM TO monochrome
	SET DBTRAPXE "SET DBTRAP"§ (versions 1.1 and 1.5 only)

	Level: 1
	dBASE IV behavior: When DBTRAP is set on, UDFs and interrupt routines are prevented from executing certain commands and functions.
	FoxPro behavior: Generates an error.
	Action: Remove this function.
	Comment: You may add commands to UDFs to save the environment at the beginning and restore it at the end. FoxPro relies on the programmer not to execute commands such as PACK or MODIFY STRUCTURE in UDFs or interrupt routines that might disrupt the function or procedure that called the UDF or interrupt routine.
	SET DESIGNXE "SET DESIGN"§

	Level: 2
	dBASE IV behavior: This command disables all design modes and prevents the user from creating or editing databases, reports, screens, queries, or applications.
	FoxPro behavior: Not supported. SET DESIGN is ignored.
	Action: None required.
	Comment: By modifying the FoxPro system menu, you can easily remove or disable the New and Open options from the File menu to prevent users from creating or modifying files.
	SET("DESIGN")XE "SET("DESIGN")"§

	Level: 2
	dBASE IV behavior: Returns ON or OFF.
	FoxPro behavior: Generates an error.
	Action: Remove this function.
	Comment: See the SET DESIGN command, above.
	SET DIRECTORY

	XE "SET DIRECTORY"§Level: 2
	dBASE IV behavior: This command establishes the full path of the default directory.
	FoxPro behavior: Generates an error.
	Action: Substitute the SET DEFAULT command.
	Comment: SET DEFAULT in FoxPro acts exactly like SET DIRECTORY in dBASE. In FoxPro, SET DEFAULT accepts a full subdirectory path. In dBASE IV, it accepts only a disk drive letter.
	Example: dBASE
	SET DIRECTORY TO c:data
	FoxPro

	SET DEFAULT TO c:data
	SET("DIRECTORY")XE "SET("DIRECTORY")"§

	Level: 2
	dBASE IV behavior: Returns the full path of the default directory.
	FoxPro behavior: Generates an error.
	Action: Substitute the SET("DEFAULT") and SYS(2003) functions.
	Comment: SET("DEFAULT") in FoxPro acts exactly like SET ("DIRECTORY") in dBASE. In FoxPro, SET DEFAULT accepts a full subdirectory path. In dBASE IV, it accepts only a disk drive letter.
	Example: dBASE
	curr_dir = SET("DIRECTORY")
	FoxPro

	curr_dir = SET("DEFAULT")+ SYS(2003)
	SET("DISPLAY")XE "SET("DISPLAY")"§

	Level: 2
	dBASE IV behavior: Returns the current video display mode.
	FoxPro behavior: Generates an error.
	Action: Store the previous video display mode in a variable before switching modes.
	Example: FoxPro
	To store the video mode:
	vmd=LEFT(SYS(2006),AT("/",SYS(2006))-1)+STR(SROWS(),2)
	SET DISPLAY TO VGA50
	To reset the video mode:
	SET DISPLAY TO &vmd
	SET ENCRYPTION and SET("ENCRYPTION")
	SET FIELDS

	XE "SET FIELDS"§Level: 1
	dBASE IV behavior: a) SET FIELDS can specify fields from multiple databases.
	b) SET FIELDS TO without inputs changes SET FIELDS to off.
	c) SET FIELDS /r makes a field read only.
	FoxPro behavior: a) Fields in the SET FIELDS command come from one database, but each work area can have its own field list.
	b) SET FIELDS TO without inputs changes the field list to the null string.
	c) The fields in a BROWSE can be made read only, but not individual fields in a SET FIELDS command.
	Action: a) Create a memory variable that stores a field list and macro substitute it into list-type commands.
	or
	Convert SET FIELDS commands with fields from more than one database to separate SET FIELDs commands for each database.
	b) SET DB4 COMPATIBLE on and SET FIELDS without inputs will SET FIELDS to off.
	Example: dBASE
	SET FIELDS TO customer->cust_id, orders->order_amt
	LIST
	FoxPro

	fld_strng = "customer.cust_id, orders.order_amt"
	LIST &fld_strng

	or
	SET FIELDS TO customer.order_amt
	LIST
	SET FIELDS TO orders.cust_id
	LIST
	SET FORMAT

	XE "SET FORMAT"§Level: 2
	dBASE IV behavior: dBASE format files (.FMTs) can contain setup and cleanup code in addition to @SAYs and @GETs.
	FoxPro behavior: Format files with commands and functions other than @SAYs and @GETs generate an error.
	Action: Move cleanup and setup code outside the format file.
	Comment: If you convert .SCR files to .SCX, replace the commands that open the format file and initiate editing (EDIT, CHANGE, APPEND, or READ) and that close the format file afterwards with a DO command that calls the generated screen file.
	SET IBLOCK TO (version 2.0 only)

	Level: 2
	dBASE IV behavior: Changes the default size of the indexing block to enhance performance.
	FoxPro behavior: Generates an error.
	Action: Remove the SET IBLOCK command. It is not necessary.
	Comment: Because Rushmore optimization in FoxPro is not affected by the size of the indexing block, this command is not necessary.
	SET INSTRUCT

	XE "SET INSTRUCT"§Level: 3
	dBASE IV behavior: Determines the level of prompting in the Control Center.
	FoxPro behavior: Not supported. SET INSTRUCT is ignored.
	Action: Remove this command.
	SET("INSTRUCT")XE "SET("INSTRUCT")"§

	Level: 2
	dBASE IV behavior: Returns ON or OFF.
	FoxPro behavior: Generates an error.
	Action: Remove this function.
	SET KEYXE "SET KEY"§ (version 1.5 only)

	Level: 2
	dBASE IV behavior: Displays only records whose ordering index matches a specified condition. This command uses an index key rather than searching the database sequentially from the top.
	FoxPro behavior: Generates an error.
	Action: Remove this command and use the SET FILTER command.
	Comment: SET FILTER also uses an index key. If the filter expression is optimizable, Rushmoreä will speed execution still further.
	Example: dBASE
	SET ORDER TO TAG ZIP
	SET KEY TO "94000","94999"
	FoxPro

	SET FILTER TO zip >= "94000" AND zip <= "94999"
	SET LDCHECKXE "SET LDCHECK"§ (version 2.0 only)

	Level: 2
	dBASE IV behavior: Enables or disables language driver ID checking.
	FoxPro behavior: Generates an error.
	Action: Remove this command.
	Comment: There is no equivalent command in FoxPro. If you need international support, make sure you have FoxPro 2.5a which offers state-of-the-art support for code page translation and multiple collate sequences.
	SET LIBRARYXE "SET LIBRARY"§ (version 1.5 only)

	Level: 1
	dBASE IV behavior: This command establishes a special procedure file that remains open in addition to any others opened with SET PROCEDURE TO.
	FoxPro behavior: SET LIBRARY TO opens a FoxPro Application Programming Interface library. If the command does not include an extension, it generates the "File does not exist" error message. If it does, non-API library files generate the "Library file is invalid" error message.
	The FoxPro SET PROCEDURE TO command allows only one procedure file to be open at a time.
	Action: Change SET LIBRARY TO to SET PROCEDURE TO. (Note that SET PROCEDURE will close any procedure file that is open.) To make the routines in the dBASE IV procedure library available throughout an application, add them to the procedure file that you open with SET PROCEDURE TO or place them in the main startup program for the application.
	SET("LIBRARY")XE "SET("LIBRARY")"§ (version 1.5 only)

	Level: 2
	dBASE IV behavior: Returns a filename.
	FoxPro behavior: Not supported. SET ("LIBRARY") is ignored.
	Action: Change SET ("LIBRARY") to SET ("PROCEDURE").
	Comment: See also the SET LIBRARY command, above.
	Example: dBASE
	curr_lib = SET("LIBRARY")
	FoxPro

	curr_lib = SET("PROCEDURE")
	SET MBLOCKXE "SET MBLOCK"§ (version 2.0 only)

	Level: 2
	dBASE IV behavior: Changes the default size of blocks that are allocated to new memo field files.
	FoxPro behavior: Generates an error.
	Action: Replace SET MBLOCK with SET BLOCKSIZE or remove the SET MBLOCK command.
	Comment: SET MBLOCK in dBASE IV is similar to SET BLOCKSIZE, found in both FoxPro and dBASE IV. The difference is that SET MBLOCK can be used independently with SET IBLOCK whereas SET BLOCKSIZE in dBASE IV affects block size for both indexes and memo files. Since Rushmore optimization in FoxPro is not affected by the size of the indexing block and since SET BLOCKSIZE in FoxPro does not affect the index block size, this command is not necessary.
	SET MESSAGEXE "SET MESSAGE"§

	Level: 3
	dBASE IV behavior: dBASE supports the optional AT key word for specifying message location.
	FoxPro behavior: FoxPro ignores the AT key word.
	Action: None required.
	Comment: You can replace AT with one of the FoxPro alignment key words LEFT, CENTER, or RIGHT.
	SET PAUSEXE "SET PAUSE"§

	Level: 3
	dBASE IV behavior: Causes SQL Select output to pause after each full screen.
	FoxPro behavior: SET PAUSE is ignored. FoxPro behaves as if PAUSE is on by default.
	Action: None required.
	SET("PAUSE")XE "SET("PAUSE")"§

	Level: 2
	dBASE IV behavior: Causes SQL Select output to pause after each full screen.
	FoxPro behavior: Generates an error. FoxPro behaves as if PAUSE is on by default.
	Action: Remove this function.
	SET PRECISIONXE "SET PRECISION"§

	Level: 3
	dBASE IV behavior: Determines the number of digits between 10 and 20 used in math calculations. The default is 16.
	FoxPro behavior: Not supported. SET PRECISION is ignored.
	Action: Remove this command.
	Comment: Precision in FoxPro is 16 digits and is not settable.
	SET("PRECISION")XE "SET("PRECISION")"§

	Level: 2
	dBASE IV behavior: Returns the number of digits used in math calculations.
	FoxPro behavior: Generates an error.
	Action: Remove this function.
	Comment: Precision in FoxPro is 16 digits and not settable.
	SET PRINTER TO FILEXE "SET PRINTER TO FILE"§

	Level: 3
	dBASE IV behavior: If no file extension is specified, dBASE writes a file with a .PRT extension.
	FoxPro behavior: If no extension is supplied, FoxPro writes a file without an extension.
	Action: None required. SET DB4 COMPATIBLE on and .PRT will be the extension assigned by default to print files.
	SET("SQL")XE "SET("SQL")"§

	Level: 2
	dBASE IV behavior: Returns ON or OFF.
	FoxPro behavior: Generates an error.
	Action: Remove this function.
	Comment: SQL is integrated in FoxPro and does not need to be turned on or off. See SQL.
	SET TITLEXE "SET TITLE"§

	Level: 3
	dBASE IV behavior: Turns the catalog file title prompt on and off.
	FoxPro behavior: Not supported. SET TITLE is ignored.
	Action: None necessary.
	Comment: Catalogs are not supported in FoxPro.
	SET("TITLE")XE "SET("TITLE")"§

	Level: 3
	dBASE IV behavior: Returns ON or OFF.
	FoxPro behavior: Always returns false.
	Action: None necessary.
	Comment: Catalogs are not supported in FoxPro.
	SET TRAP

	XE "SET TRAP"§Level: 3
	dBASE IV behavior: When on, the debugger is invoked when you press the ESC key.
	FoxPro behavior: Not supported. SET TRAP is ignored.
	Action: None required. Run program with trace and debug window open.
	Comment: FoxPro is a windowing application, so you can see both your application and the debug and trace windows simultaneously. There is no need to toggle between your application and your debugging environment.
	To imitate SET TRAP, use the SET ECHO command. This will bring up the Trace window when an error occurs.
	Example: FoxPro
	ON ERROR SET ECHO ON
	SET("TRAP")XE "SET("TRAP")"§

	Level: 2
	dBASE IV behavior: Returns ON or OFF.
	FoxPro behavior: Generates an error.
	Action: Run program with trace and debug window open.
	SET VIEWXE "SET VIEW"§

	XE "SET ("TRAP")"§Level: 2
	dBASE IV behavior: Performs a query or restores a view from a dBASE III Plus view (.VUE) file.
	FoxPro behavior: Generates an error if a query is specified.
	Action: If SET VIEW is running a query, replace the command with the DO command. If SET VIEW specifies a .VUE file, no action is necessary.
	Comment: See the section titled "Using dBASE queries" as some queries may need to be modified before running properly in FoxPro.
	Example: dBASE

	SET VIEW TO myquery.qbe
	FoxPro
	DO myquery.qbe
	SET("VIEW")XE "SET("VIEW")"§

	XE "SET ("TRAP")"§Level: 2
	dBASE IV behavior: Returns ON or OFF.
	FoxPro behavior: Generates an error.
	Action: Save the VIEW to a memory variable after using the SET VIEW command, and interrogate this variable instead of calling the SET("VIEW") function.
	SET("WINDOW")XE "SET("WINDOW")"§

	Level: 2
	dBASE IV behavior: Returns the name of the default window for memo fields.
	FoxPro behavior: Generates an error.
	Action: Save the name of the window created by the SET WINDOW OF MEMO command in a variable and interrogate this variable.
	SQLXE "SQL"§

	Level: 1
	dBASE IV behavior: To work with dBASE data in SQL, you must create an SQL database and convert the dBASE databases to SQL tables (which are stored in a group of .DBF files). To activate and deactivate SQL mode, you must use SET SQL ON | OFF.
	FoxPro behavior: FoxPro supports CREATE CURSOR, CREATE TABLE, INSERT, and SELECT. These commands can be interspersed with standard Xbase commands and do not require a semicolon at the end. SET SQL ON and SET SQL OFF are not required and are ignored by FoxPro.
	Action: Complex dBASE IV SQL programs will not run in FoxPro and will have to be rewritten in FoxPro.
	STOREXE "STORE"§XE "Arrays"§

	Level: 4
	dBASE IV behavior: If you use the name of an array in a STORE command with no reference to array elements, dBASE IV releases the array from memory and creates a single memory variable with the same name.
	FoxPro behavior: If you use the name of an array in a STORE command with no reference to array elements, FoxPro assigns the specified value to every element in the array.
	Action: No action is required unless your program relies on STORE to transform an array to a memory variable.
	To prevent STORE in FoxPro from initializing all elements of an array with one value, SET COMPATIBLE DB4 on.
	SUM()

	XE "SUM()"§Level: 3
	dBASE IV behavior: The number specified in SET DECIMALS is the number of decimal places that are output by SUM.
	FoxPro behavior: The number of decimal places in the database structure for the field being summed determines the number of decimal places that are output.
	Action: SET COMPATIBLE DB4 on to use the number of decimal places specified in SET DECIMALS.
	TAG()XE "TAG()"§

	Level: 2
	dBASE IV behavior: dBASE allows the use of TAG() which returns active tag name or a null string if no tag is active.
	FoxPro behavior: Generates an error.
	Action: Replace with SYS(22).
	Example: dBASE
	TAG()
	FoxPro
	SYS(22)
	TAGCOUNT() XE "TAGCOUNT() "§(version 1.5 only)

	Level: 2
	dBASE IV behavior: The TAGCOUNT function returns the number of tags in an .MDX file.
	FoxPro behavior: Generates an error.
	Action: Use user-defined function.
	Comment: The Migration Kit includes a procedure library with a user-defined function called TAGCOUNT() that behaves exactly like the dBASE function TAGCOUNT. See the section titled "Calling user-defined functions" above.
	TAGNO()XE "TAGNO()"§ (version 1.5 only)

	Level: 2
	dBASE IV behavior: The TAGNO function returns the number of the tag specified as input.
	FoxPro behavior: Generates an error.
	Action: Use user-defined function.
	Comment: The Migration Kit includes a procedure library with a user-defined function called TAGNO() that behaves exactly like the dBASE function TAGNO. See the section titled "Calling user-defined functions" above.
	Transaction processingXE "Transaction processing"§

	Level: 1
	dBASE IV behavior: Although infrequently used, dBASE IV supports a transaction processing system. The transaction processing facilities include:
	BEGIN TRANSACTIONXE "BEGIN TRANSACTION"§ ... END TRANSACTIONXE "END TRANSACTION"§ command
	ROLLBACKXE "ROLLBACK"§ command
	RESETXE "RESET"§ command
	NOLOGXE "NOLOG"§ key word in the USE command
	COMPLETEDXE "COMPLETED"§ function
	ROLLBACK function
	ISMARKEDXE "ISMARKED"§ function
	FoxPro behavior: These commands and functions are not supported and generate errors.
	Action: Replace these functions and commands with equivalents supported by Novell Netware's Transaction Tracking System or with third-party software. FoxPro 2.5 for MS-DOS includes a library enabling applications to call the Netware TTS. See Appendix E for a list of products that offer transaction processing and a wealth of other network and security features.
	UNIQUE()XE "UNIQUE()"§ (version 1.5 only)

	Level: 2
	dBASE IV behavior: The UNIQUE function evaluates to .T. if an index was created with UNIQUE set ON or with the UNIQUE key word, or .F. otherwise.
	FoxPro behavior: Generates an error.
	Action: This function must be removed.
	USEXE "USE"§ NOSAVEXE "NOSAVE"§, NOLOGXE "NOLOG"§, EXCLUSIVE, AGAINXE "EXCLUSIVE"§

	Level: 2
	dBASE IV behavior: a) NOSAVE causes dBASE IV to erase the database when it is closed.
	b) The NOLOG key word suppresses the recording of changes in the transaction log if one is currently open.
	c) By default SET EXCLUSIVE is off.
	d) In dBASE IV 1.1, AGAIN assigns an alias that's the same as the letter of the work area. In dBASE IV 1.5, the assigned alias is an underscore character plus the number of the work area (e.g. _2).
	FoxPro behavior: a) The NOSAVE key word is not supported and generates an error.
	b) The NOLOG key word is not supported and generates an error.
	c) By default, SET EXCLUSIVE is on in FoxPro.
	d) AGAIN behaves like dBASE IV 1.1--the assigned alias is the letter of the work area into which the second copy of the database is opened.
	Action: a) Use CREATE CURSOR to define a temporary database that is automatically removed from memory when it is closed. Or add a DELETE FILE command to erase the database after you close it.
	b) The NOLOG key word is not supported and should be removed.
	c) If your application needs shared use of a database, set EXCLUSIVE off.
	d) Assign the same alias dBASE would, namely, an underscore character plus the number of the work area into which the database is opened.
	USER

	See Network functions.
	WINDOW()

	XE "WINDOW()"§Level: 2
	dBASE IV behavior: Returns the name of the active window.
	FoxPro behavior: Generates an error.
	Action: Substitute either WONTOP (which returns the topmost window) or WOUTPUT (which returns the current output window).
	Comment: FoxPro has a more advanced windowing model where it is possible for a window to be "active" in two senses--it can be on top of one or more windows, and/or it can be receiving output.
	A UDF called WINDOW() in FOXPROC.UDF allows you to leave instances of the dBASE function WINDOW() unchanged if you wish. The UDF returns the value of the FoxPro function WONTOP(). See the section titled "Calling user-defined functions" above.
	Example: dBASE
	wind_name = WINDOW()
	FoxPro

	wind_name = WONTOP()
	or
	wind_name = WOUTPUT()

	Migrating Clipper Summer '87 applications: an overview
	Steps to takeXE "Steps to Take"§
	A note on Clipper 5.x applications

	Using Clipper database, memo, and index files
	Databases
	Memo files

	Indexes
	.NDX indexes
	.NTX indexes
	Choosing a database
	Selecting an index type

	Creating FoxPro screen files from .FMT and .PRG files
	Reports and Labels
	Visibility of functions and procedures
	"Extracting" functions and procedures
	Single procedure file or multiple .PRGs

	Addressing Clipper language compatibility issues
	Overview
	Other compatibility issues

	Function CallsXE "Function Calls"§
	Clipper:
	FSEEK(handle,15,0)
	FoxPro:

	= FSEEK(handle,15,0)
	or
	dummy = FSEEK(handle,15,0)
	or
	? FSEEK(handle,15,0)

	ACHOICE(), DBEDIT(), and MEMOEDIT()
	Error handlingXE "Error handling"§
	Example: Clipper
	OldScreen=SAVESCREEN(0, 0, 24, 79,)
	CLEAR
	@ 2, 12 SAY "Please standby while Printing!"
	BEGIN SEQUENCE
	SET PRINT ON
	Foo()
	END
	SET PRINT OFF
	CLEAR
	@ 2, 12 SAY "Cannot print report at this time!"
	@ 3, 12 SAY "Please try again later!"
	RESTSCREEN(0, 0, 24, 79, OldScreen)
	FUNCTION Foo
	USE Test Exclusive
	IF NETERR()
	BREAK && If you can't get exclusive return
	&& to END statement
	ENDIF
	PrintIt() && is a hard-coded report that
	&& requires exclusive file use
	&& It never executes if Break hit.
	RETURN .T.
	Error handling FoxPro-style
	Example: FoxPro
	ON ERROR DO Err_Hand WITH ERROR(), MESSAGE(), ;
	MESSAGE(1), SYS(16), LINENO(), SYS(102), SYS(100), ;
	SYS(101), LASTKEY(), ALIAS(), SYS(18), SYS(5), ;
	SYS(12), SYS(6), SYS(2003), WONTOP(), ;
	SYS(2011), SYS(2018), SET("CURSOR")
	Example: FoxPro

	PROCEDURE Err_Hand
	PARAMETERS m_error, m_message, m_message2, ;
	m_progname, m_lineno, m_prtset, m_console, m_device, ;
	m_lastkey, m_alias, m_curget, m_defdriv, m_mem, ;
	m_print, m_curdir, m_wontop, m_lockstat, ;
	m_winname, m_cursor
	DO CASE
	CASE m_error= <error you want to trap>
	<handle the error>
	CASE m_error = 3 or ERROR() = 108
	Activate Window Message
	YN=" "
	@ 1,1 Say "File is already in use! Retry Y/N ? "
	Get YN
	Read
	If Upper(YN) $ "Y"
	Retry
	Else
	Set Print Off
	Return
	Endif
	CASE m_error= <some other error>
	<handle the error>
	...
	ENDCASE

	Simulating BEGIN SEQUENCE...[BREAK]...END in FoxPro
	Example: FoxPro
	DO WHILE .T.
	<statements>...
	IF break_cond
	EXIT
	ENDIF
	<statements>...
	ENDDO
	<recovery statements>...
	Example Clipper

	DO MyRoutine [WITH parm1, parm2, ...]
	FoxPro

	IF !MyRoutine ([parm1, parm2 ...])
	EXIT &&If call is in original block
	* or RETURN .F. &&If call is at lower level
	ENDIF
	
	If your routine is already a function, there are other changes that need to be made.
	Example Clipper

	MyRoutine ([parm1, parm2 , ...])
	FoxPro

	PRIVATE RVAL
	RVAL = .F.
	IF !MyRoutine(@RVAL [parm1, parm2, ...])
	EXIT &&If ref is in BEGIN SEQ block
	* or RETURN .F. &&If ref is at lower level
	ENDIF
	RETURN RVAL
	Or
	
	PRIVATE RVAL
	RVAL = .F.
	x = MyRoutine(parm1, parm2,@RVAL)
	IF !rval
	EXIT
	* or RETURN .F.
	ENDIF
	Example: Clipper

	FUNCTION MyRoutine
	PARAMETERS parm1, parm2,...
	DO Whatever
	BREAK
	DO Whatever
	RETURN whatever
	FoxPro

	FUNCTION MyRoutine
	PARAMETERS RVAL, parm1, parm2,...
	DO Whatever
	RETURN .F.
	DO Whatever
	RVAL=whatever
	RETURN .T.

	Third party libraries
	Arrays
	Color
	Example: FoxPro:
	* Modify a color scheme and then load it
	SET COLOR OF SCHEME 24 TO B/BG,W+/N, ;
	BG+/BG,N/BG,N/BG,W+/GR,GR+/RB,N+/N,GR+/B,R+/B
	SET COLOR SET TO SCHEME 24

	Other compatibility issues
	Windows Specific Problems
	Printing
	ASCII character set.

	Binary functions
	SET commands
	Keystrokes
	Alphabetical list of potential Clipper issues
	== (comparison operator)XE "== (comparison operator)"§
	Level: 3
	Clipper behavior: For character strings, returns TRUE if the strings are of exactly of the same length. Trailing spaces are ignored.
	FoxPro behavior: Character strings must contain exactly the same characters, including spaces, for the operation to return TRUE.
	Action: Use the RTRIM(), LTRIM() or ALLTRIM() functions to remove spaces from strings before comparing them.
	Example: Clipper
	IF string1==string2
	<execute code>
	ENDIF
	FoxPro

	IF ALLTRIM(string1)==ALLTRIM(string2)
	<execute code>
	ENDIF
	ACHOICE()XE "ACHOICE()"§

	Level: 1
	Clipper behavior: ACHOICE() creates a menu based on two arrays. One of the arrays stores prompts, the other stores Logical values to dim or not dim the prompt array.
	FoxPro behavior: Generates an error.
	Action: Remove ACHOICE(). If ACHOICE() was used as a menu, recreate it using the FoxPro Menu Builder. If it was used as a picklist, replace it with a popup. For large lists, use a list array. For short lists, a popup with prompt fields should work fine.
	Example: Example 1: ACHOICE() used to create a menu
	Clipper:
	DO WHILE .T.
	menu_size=6
	DECLARE cues[menu_size], msgs[menu_size]
	cues[1] = " Orders "
	cues[2] = " Styles "
	cues[3] = " Tables "
	cues[4] = " Totals "
	cues[5] = " Reports "
	cues[6] = " Get Totals "
	msgs[1] = " Enter, Edit, Delete and View orders."
	msgs[2] = " Enter, Edit, Delete and View Styles table.; 	Add or change items."
	msgs[3] = " Manage Tables."
	msgs[4] = " View Totals."
	msgs[5] = " Run any of the reports."
	msgs[6] = " Create Totals."
	mchoice=ACHOICE(1, 1, 2, 80, cues, msgs)
	DO CASE
	CASE mchoice = 1
	THE_USUAL('ORD', .f., .f., .t.)
	CASE mchoice = 2
	THE_USUAL('STY')
	CASE mchoice = 3
	TABL_MENU()
	CASE mchoice = 4
	TOTL_MENU()
	CASE mchoice = 5
	RPT_MENU()
	CASE mchoice = 6
	GET_MENU()
	OTHERWISE
	Exit
	ENDCASE
	ENDDO
	QUIT
	FoxPro: replace an ACHOICE() menu with FoxPro menu

	The above Clipper example would appear like this if created via the FoxPro Menu Builder. FoxPro would then generate the code for this menu for you.
	µ §

	To hand code these menus, the program would look like this:
	SET SYSMENU TO
	SET SYSMENU AUTOMATIC
	DEFINE PAD Orders OF _MSYSMENU PROMPT "Orders"
	DEFINE PAD Styles OF _MSYSMENU PROMPT "Styles"
	DEFINE PAD Tables OF _MSYSMENU PROMPT "Tables"
	DEFINE PAD Reports OF _MSYSMENU PROMPT "Reports"
	DEFINE PAD GetTotal OF _MSYSMENU PROMPT "Get Totals"
	DEFINE PAD mQuit OF _MSYSMENU PROMPT "Quit"
	ON SELECTION PAD Orders OF _MSYSMENU do ordmenu
	ON SELECTION PAD Styles OF _MSYSMENU do stymenu
	ON SELECTION PAD Tables OF _MSYSMENU do tablmenu
	ON SELECTION PAD Reports OF _MSYSMENU do rptmenu
	ON SELECTION PAD GetTotal OF _MSYSMENU do totmenu
	ON SELECTION PAD mQuit OF _MSYSMENU QUIT
	Example 2: Clipper: ACHOICE() used to create a large picklist

	select 0
	use Vendor
	DECLARE raTemp[RECCOUNT()]
	FOR i = 1 TO RECCOUNT()
	raTemp[i] = Accoun_nam
	SKIP
	NEXT
	nChoice= ACHOICE(nTrow+1, nTcol+1, ; nBrow-1, nBcol-1, raTemp)
	FoxPro popup with list array

	DIMENSION Myarray[RECCOUNT()]
	Select Vendor.Accoun_nam, recno() ;
	from Profile into array Myarray
	=Asort(Myarray)
	@ 0,0 GET Vendor.Accoun_nam ;
	PICTURE "@&T" ;
	FROM Myarray ;
	SIZE 16,33 ;
	DEFAULT 1 ;
	WHEN check_prompt() ;
	COLOR SCHEME 2
	Example 3: Clipper: ACHOICE() used to create a short picklist

	See Example Above
	FoxPro popup with prompt fields

	Select Selcodes
	Set Filter to Popname="ContType"
	Go Top
	m.type="Telephone"
	DEFINE WINDOW ContactTy FROM 8, 2 TO 16,21 ;
	TITLE " Contact Type " NOFLOAT ;
	NOCLOSE NOMINIMIZE COLOR SCHEME 1
	DEFINE POPUP Contact PROMPT FIELD pcue ;
	SCROLL MARGIN MARK ""
	ACTIVATE WINDOW ContactTy SAME
	@ 0,0 GET m.type PICTURE "@&T" POPUP Contact ;
	SIZE 7,18 DEFAULT " " COLOR SCHEME 2
	READ CYCLE MODAL ;
	VALID Finishit()
	RELEASE WINDOW ContactTy
	RELEASE POPUPS Contact
	m.cont_type=pcue
	SELECT Calls
	SHOW GET m.cont_type ENABLE
	FUNCTION FinishIt && Read level valid
	ADIR()XE "ADIR()"§

	Level: 2
	Clipper behavior: ADIR() takes up to five arrays as arguments.
	FoxPro behavior: ADIR() requires and accepts only one array.
	Action: Change the syntax of the ADIR() function.
	Comment: FoxPro supports multiple dimensions in arrays, obviating the need for several arrays.
	Example: Clipper
	DECLARE aName[10], aSize[10], aDate[10], aTime[10]
	ADIR(aName,aSize,aDate,aTime)
	FoxPro

	=ADIR(Arin,"*.dbf")
	AFIELDS()XE "AFIELDS()"§

	Level: 2
	Clipper behavior: AFIELDS() accepts up to four arrays as arguments.
	FoxPro behavior: AFIELDS() requires and accepts only one array.
	Action: Change the syntax of the AFIELDS() function.
	Comment: FoxPro supports multiple dimensions in arrays, obviating the need for several arrays.
	Example: Clipper
	DECLARE aNames[FCOUNT()],aTypes[FCOUNT()] ;
	aWidths[FCOUNT()], aDec[FCOUNT()]
	=AFIELDS(aNames, aTypes, aWidths, aDec)
	fld_name=aNames
	fld_type=aTypes
	fld_width=aWidths
	fld_dec=aDec
	FoxPro

	fld_width=Myarray(3,1)
	fld_dec=Myarray(4,1)
	AFILL()XE "AFILL()"§

	Level: 2
	Clipper behavior: AFILL() fills an array with a chosen value.
	FoxPro behavior: Generates an error.
	Action: Remove AFILL(). Simply set the array name (without any subscript reference or brackets) equal to the desired value. Each array element will be set to that value.
	Example: Clipper
	AFILL(Myarray,"")
	FoxPro

	Myarray = ""
	ALTD()XE "ALTD()"§

	Level: 2
	Clipper behavior: ALTD() invokes the Clipper debugger.
	FoxPro behavior: Generates an error.
	Action: Remove ALTD(). Replace with code to suspend program execution and invoke the Trace and/or Debug window.
	Example: Clipper
	Do WHILE !EOF()
	ALTD()
	ENDDO
	FoxPro

	Do WHILE !EOF()
	ACTIVATE WINDOW Trace
	ACTIVATE WINDOW Debug
	SUSPEND
	ENDDO
	APPEND FROM FIELDSXE "APPEND FROM FIELDS"§

	Level: 2
	Clipper Behavior: The FIELDS clause precedes the FROM clause. In addition, a WHILE clause is supported.
	FoxPro Behavior: Generates an error if the FIELDS clause precedes the FROM clause.
	Action: Place the FROM clause before the FIELDS clause.
	Example: Clipper
	APPEND FIELDS Id, Firstname, Lastname FROM Myfile ;
	FOR Id > 10 WHILE Lastname = "Smith"
	FoxPro

	APPEND FROM Myfile Fields Id, Firstname, Lastname ;
	FOR Id > 10 AND Lastname = "Smith"
	APPEND FROM WHILEXE "APPEND FROM WHILE"§

	Level: 2
	Clipper Behavior: Supports a WHILE clause.
	FoxPro Behavior: Generates an error if a WHILE clause is included.
	Action: Use a FOR clause instead of WHILE.
	Example: Clipper
	APPEND FIELDS Id, Firstname, Lastname FROM Myfile ; FOR Id > 10 WHILE Lastname = "Smith"
	FoxPro

	APPEND From Myfile Fields Id, Firstname, Lastname ;
	FOR Id > 10 and LASTNAME = "Smith"
	BEGIN SEQUENCE...[BREAK]...ENDXE "BEGIN SEQUENCE..[BREAK]...END"§

	Level 1
	Clipper behavior: Defines a code sequence of statements used for error handling.
	FoxPro behavior: Generates an error.
	Action: There are two approaches to adapting Clipper error handling code. The recommended approach is to reengineer the error handling code using FoxPro's ON ERROR command. A second, potentially much more complicated approach, is to mimic BEGIN SEQUENCE...END with DO WHILE loops.
	Example: See the section titled "Error handling"
	BIN2I()XE "BIN2I()"§

	Level: 1
	Clipper behavior: Converts a character string formatted as a 16‑bit signed integer to a Clipper numeric value.
	FoxPro behavior: Generates an error.
	Action: Use the UDF of the same name in the procedure file BINFUNC.PRG found in the BINFUNC directory on the Migration Kit disk. This file contains UDFs for each of the five Clipper binary functions. Make these UDFs available to your program and there will be no need to change the Clipper function or code which relies on it.
	BIN2L()XE "BIN2L()"§

	Level: 1
	Clipper behavior: Converts a character string formatted as a 32‑bit signed integer to a Clipper numeric value.
	FoxPro behavior: Generates an error.
	Action: Use the UDF of the same name in the procedure file BINFUNC.PRG found in the BINFUNC directory on the Migration Kit disk. This file contains UDFs for each of the five Clipper binary functions. Make these UDFs available to your program and there will be no need to change the Clipper function or code which relies on it.
	BIN2W()XE "BIN2W()"§

	Level: 1
	Clipper behavior: Converts a character string formatted as a 16‑bit unsigned integer to a Clipper numeric value.
	FoxPro behavior: Generates an error.
	Action: Use the UDF of the same name in the procedure file BINFUNC.PRG found in the BINFUNC directory on the Migration Kit disk. This file contains UDFs for each of the five Clipper binary functions. Make these UDFs available to your program and there will be no need to change the Clipper function or code which relies on it.
	CALLXE "CALL"§

	Level: 1
	Clipper behavior: Executes separately compiled routines and programs. Allows passing of a list of expressions.
	FoxPro behavior: Executes a binary file that has been placed in memory with the LOAD command. CALL allows passing only a single character string.
	Clipper Summer '87 programs with the CALL command will generate an error in FoxPro.
	Action: Remove the function or recompile the routine to make it usable by FoxPro.
	Comment: Separately compiled and assembled routines for Clipper cannot be run in FoxPro as is. They would have to recompiled and turned into .BIN files or, using the FoxPro Library Construction Kit (LCK), into a .PLB or .FLL. For more information about the LCK, call 1-800-221-4679.
	CANCELXE "CANCEL"§

	Level: 3
	Clipper behavior: Returns to the operating system.
	FoxPro behavior: Returns to the last calling program or to FoxPro.
	Action: To return to the operating system, replace CANCEL with QUIT.
	CLEARXE "CLEAR"§

	Level: 2
	Clipper behavior: CLEAR supports a SCREEN clause which suppresses the automatic clearing of GETs.
	FoxPro behavior: A SCREEN clause generates an error.
	Action: Remove the SCREEN clause. By default, CLEAR in FoxPro will not clear GETs. To clear GETs, add the CLEAR GETS command.
	Comment: In Clipper, Clear Screen is used to clear the screen, place the cursor in the home position and clear any pending GETs. In FoxPro, the CLEAR GETS or CLEAR ALL command is required to clear the pending GETS. CLEAR alone, in FoxPro, clears the screen. If you have used the SCREEN option to clear GETs in your Clipper program, you must add a CLEAR GETS to your program to get the same effect in FoxPro.
	Example: Clipper
	CLEAR
	FoxPro

	CLEAR
	CLEAR GETS && If your program expects GETs to
	&& be cleared by the CLEAR command
	COMMITXE "COMMIT"§

	Level: 2
	Clipper behavior: COMMIT flushes all Clipper buffers to DOS and then performs a solid‑disk write.
	FoxPro behavior: Generates an error.
	Action: Replace with the equivalent FoxPro command FLUSH.
	Example: Clipper
	COMMIT
	FoxPro

	FLUSH
	DBEDIT()XE "DBEDIT()"§

	Level: 1
	Clipper behavior: DBEDIT() displays and edits records from one or more work areas using a browse‑style table layout that executes within a defined window area. DBEDIT() takes a custom keyboard handling routine which modifies its behavior.
	FoxPro behavior: Generates an error.
	Action: Remove the DBEDIT function and replace it with a BROWSE command.
	Comment: Customize the browse to match the previous behavior of DBEDIT(). You will not need to translate your keyboard handling routine because FoxPro handles the keystrokes for you. You use command line parameters to modify BROWSE behavior rather than writing a function call.
	BROWSE includes a lot of built-in functionality that you had to write for yourself in Clipper. For example, in DBEDIT, to present read-only data, it required creating a key handling function that never allowed editing. In FoxPro, you simply issue the command line argument NOMODIFY after the BROWSE statement.
	Example: Clipper
	USE Customer
	DECLARE field_list[3]
	field_list[1] = "Branch"
	field_list[2] = "Salesman"
	field_list[3] = "Amount"
	DBEDIT(4, 0, 22, 79, FIELD_LIST, "UserFunc")
	FoxPro

	DEFINE WINDOW Tbrowse FROM 4, 0 to 22, 79
	USE Customer
	BROWSE FIELDS Branch, Salesman, Amount ;
	LAST NORMAL WINDOW TBROWSE;
	TITLE "Customer"
	DBFILTER()XE "DBFILTER()"§

	Level: 2
	Clipper behavior: DBFILTER() returns as a character string the filter condition defined in the current work area.
	FoxPro behavior: Generates an error.
	Action: Replace DBFILTER() with the identically behaved FoxPro function FILTER().
	Example: Clipper
	filt_string=DBFILTER()
	FoxPro

	filt_string=FILTER()
	DBRELATION()XE "DBRELATION()"§

	Level: 2
	Clipper behavior: DBRELATION() returns a character string containing a relation expression.
	FoxPro behavior: Generates an error.
	Action: Replace DBRELATION() with its FoxPro equivalent, RELATION().
	Example: Clipper
	rel_string=DBRELATION()
	FoxPro

	rel_string=RELATION()
	DBRSELECT()XE "DBRSELECT()"§

	Level: 2
	Clipper behavior: DBRSELECT() returns the work area number of a specified relation.
	FoxPro behavior: Generates an error.
	Action: Create a user-defined function called DBRSELECT() that mimics the behavior of its Clipper namesake. Include this function in your program or place it in a procedure library.
	The UDF should use the FoxPro function TARGET() to return the proper value. Note you must be in the workarea in which you wish to find the relation..
	Example: Clipper
	MyArea=DBRSELECT(1)
	FoxPro

	MyArea=DBRSELECT(1)
	FUNCTION DBRSELECT
	PARAMETERS relnum
	PRIVATE i, malias, relnum
	mAlias=TARGET(relnum)
	i=0
	If !EMPTY(malias)
	FOR i= 1 TO 255
	IF ALIAS(i) = malias
	RETURN i
	ENDIF
	NEXT
	IF i = 226
	i =0
	ENDIF
	ENDIF
	RETURN i
	DESCEND()XE "DESCEND()"§

	Level: 2
	Clipper behavior: DESCEND() allows creation of descending order indexes and perform seeks on descending indexes.
	FoxPro behavior: Generates an error.
	Action: Replace with the equivalent FoxPro command ASCENDING | DESCENDING in the INDEX ON expression. ASCENDING and DESCENDING can be toggled with the SET ORDER TO command in FoxPro.
	Example: Clipper
	INDEX ON DESCEND(Lastname) TO Lastname
	SET INDEX TO Lastname
	SEEK "Jones"
	FoxPro

	INDEX ON Lastname TO Lastname DESCENDING
	SET INDEX TO Lastname
	SET ORDER TO Tag Lastname Descend
	SEEK "Jones"
	DOSERROR()XE "DOSERROR()"§

	Level: 2
	Clipper behavior: DOSERROR() returns the number of the last MS-DOS error.
	FoxPro behavior: Generates an error.
	Action: Modify error handling routines to use the ON ERROR command.
	Comment: See the section titled "Error handling."
	Because Clipper applications are compiled, most errors that occur at runtime are critical errors requiring the user to be returned to the operating system. DOSERROR() in Clipper is used to determine what caused RUN commands to fail.
	Example: Clipper
	IF NETERR() .AND. model == "USE"
	RETURN .F.
	ENDIF
	BREAK_SEQ()
	RETURN ERR_EXIT(ERR_LINE() + M->info + ", " ;
	+ M->_1 + IF(DOSERROR() > 0, ", DOS error " ;
	+ STR(DOSERROR()) , ""))
	FoxPro

	ON ERROR DO FP25EROR WITH ERROR(),; MESSAGE(), ;
	MESSAGE(1), SYS(16), LINENO(), SYS(102), ;
	SYS(100), SYS(101), LASTKEY(), ;
	ALIAS(), SYS(18), SYS(5), SYS(12), SYS(6),;
	SYS(2003), WONTOP(), ;
	SYS(2011), SYS(2018), SET("CURSOR")
	ERRORLEVEL()XE "ERRORLEVEL()"§

	Level: 2
	Clipper behavior: ERRORLEVEL() returns the current MS-DOS error level setting.
	FoxPro behavior: Generates an error.
	Action: ERRORLEVEL() was primarily used with the Clipper utility, SWITCH.EXE in situations where the programmer needed to run multiple executables. You do not need to check the MS-DOS error level when running the equivalent FoxPro command, FOXSWAP. Once you replace uses of SWITCH.EXE with FOXSWAP, this function can be removed.
	EXTERNALXE "EXTERNAL"§

	Level: 2
	Clipper behavior: EXTERNAL declares a symbol to the Clipper compiler.
	FoxPro behavior: Generates an error.
	Comment: In FoxPro, EXTERNAL is used to include files and to resolve undefined references in a FoxPro project. EXTERNAL is used only by the Project Manager and is ignored during program execution. EXTERNAL in Clipper is a command to the compiler that it will find references to the functions listed after EXTERNAL at link time, rather than at compile time.
	Action: Remove EXTERNAL references. FoxPro does not require the programmer to create compiler directives.
	Comment: The Project Manager handles resolving references in FoxPro. When an applications is built using the Project Manager, it will search for programs, functions and procedures which are called by the application. If it can find them, it will add them to the application. If it can't, it asks the developer to locate them.
	FREAD()XE "FREAD()"§

	Level: 2
	Clipper behavior: FREAD() returns the number of bytes read, and reads those bytes into a memory variable which must be included as an argument.
	FoxPro behavior: FREAD() returns the data actually read and accepts as an argument the number of bytes to read.
	Action: Change the syntax of FREAD().
	Example: Clipper
	block = 128
	buffer = SPACE(512)
	handle = FOPEN("Test.txt")
	
	IF FERROR() <> 0
	bytes = FREAD(handle, @buffer, block)
	IF bytes <> block
	? "Error reading Test.txt"
	ENDIF
	ENDIF
	FoxPro

	*Note: TEST.TXT must exist in this example
	STORE FOPEN('test.txt') TO file_handle
	STORE FSEEK(file_handle, 0, 2) TO ifp_size
	IF ifp_size <= 0 && Is File empty?
	WAIT WINDOW 'This file is empty!' NOWAIT
	ELSE
	l_string = FREAD(file_handle, ifp_size)
	ENDIF
	FREADSTR()XE "FREADSTR()"§

	Level: 2
	Clipper behavior: FREADSTR() reads characters from a DOS file.
	FoxPro behavior: Generates an error.
	Action: Replace FREADSTR() with the equivalent FoxPro function FREAD().
	Example: Clipper
	buffer = FREADSTR(handle,16)
	FoxPro

	buffer = FREAD(handle,16)
	HARDCR()XE "HARDCR()"§

	Level: 2
	Clipper behavior: HARDCR() replaces all soft carriage returns with hard carriage returns.
	FoxPro behavior: Generates an error.
	Action: Remove the function HARDCR(). FoxPro supports word wrapping in memo fields, so the function should not be necessary.
	Comment: By default, word wrap is on in FoxPro. However, if you wish to strictly emulate HARDCR(), use the STRTAN() function.
	Example: Clipper
	memo_var=HARDCR(memo_var)
	FoxPro

	*Note this code should not be necessary!
	memo_var=STRTRAN(memo_var,CHR(141),CHR(13)+CHR(10))
	I2BIN()XE "I2BIN()"§

	Level: 2
	Clipper behavior: I2BIN() converts an integer numeric data type to a two-byte character containing a 16‑bit binary integer.
	FoxPro behavior: Generates an error.
	Action: Use the UDF of the same name in the procedure file BINFUNC.PRG found in the BINFUNC directory on the Migration Kit disk. This file contains UDFs for each of the five Clipper binary functions. Make these UDFs available to your program and there will be no need to change the Clipper function or code which relies on it.
	IFXE "IF"§

	Level: 2
	Clipper behavior: An ELSEIF clause is supported.
	FoxPro behavior: Inclusion of ELSEIF generates an error.
	Action: Change the IF..ENDIF to a nested IF or CASE statement.
	Comment: For long ELSEIF constructs, a CASE statement works best.
	Example: Clipper
	IF A
	<do something>
	ELSEIF B
	<do something else>
	ELSE
	<do nothing>
	ENDIF
	FoxPro: nested if example

	IF A
	<do something>
	ELSE
	IF B
	<do something else>
	ELSE
	<do nothing>
	ENDIF
	ENDIF
	FoxPro: Case statement example

	DO CASE
	CASE A
	<do something>
	CASE B
	<do something else>
	CASE <N>
	<do still another thing>
	OTHERWISE
	<do nothing>
	ENDCASE
	IF()XE "IF()"§

	Level: 2
	Clipper behavior: Performs an "immediate if."
	FoxPro behavior: Generates an error.
	Action: Replace IF() with the equivalent FoxPro function IIF().
	Example: Clipper
	IF(Paid, SPACE(0), "Go get 'em")
	FoxPro

	IIF(Paid, SPACE(0), "Go get 'em")
	INDEXEXT()XE "INDEXEXT()"§

	Level: 2
	Clipper behavior: INDEXEXT() returns the type of index used in an application.
	FoxPro behavior: Generates an error.
	Action: Remove the function. Since FoxPro only uses its own index file formats, there is no need to check for index type.
	Comment: Note FoxPro does support .IDX indexes (a single-entry index similar to .NTXs and .NDXs) as well as .CDX indexes which can contain multiple tags. In addition, .CDXs are automatically opened and closed by FoxPro when the database with which they are associated is opened and closed.
	INDEXKEY()XE "INDEXKEY()"§

	Level: 2
	Clipper behavior: INDEXKEY() returns the key expression of an index.
	FoxPro behavior: Generates an error.
	Action: Replace INDEXKEY() with equivalent FoxPro function SYS(14) or use the KEY() function.
	Example: Clipper
	MyKey=INDEXKEY(1)
	FoxPro

	MyKey=KEY(1)
	or
	MyKey=SYS(14,1)
	INDEXORD()XE "INDEXORD()"§

	Level: 2
	Clipper behavior: INDEXORD() returns the index position number of the controlling index in the list of open index files.
	FoxPro behavior: Generates an error.
	Action: Replace INDEXORD() with the FoxPro function, SYS(21).
	Comment: Note that SYS(21) returns a string.
	Example: Clipper
	pos_num=INDEXORD(1)
	FoxPro

	pos_num=VAL(SYS(21))
	INKEY()XE "INKEY()"§, LASTKEY()XE "LASTKEY()"§, SET FUNCTIONXE "SET FUNCTION"§

	Level: 3
	Clipper behavior: FoxPro and Clipper Summer '87, in many cases, map keys to different values.
	FoxPro behavior: These functions and commands work the same way as in Clipper, but FoxPro key values may differ so unmodified Clipper programs may not behave as expected in FoxPro.
	Action: Consult Appendix G for a table comparing Clipper key values with those of FoxPro and change your code accordingly.
	ISPRINTER()XE "ISPRINTER()"§

	Level: 2
	Clipper behavior: ISPRINTER() determines if LPT1 is ready.
	FoxPro behavior: Generates an error.
	Action: Substitute the FoxPro function PRINTSTATUS().
	Comment: It is not specific to LPT1, and will return the status of the active print device.
	Example: Clipper
	? ISPRINTER()
	FoxPro

	? PRINTSTATUS()
	L2BIN()XE "L2BIN()"§

	Level: 1
	Clipper behavior: L2BIN() converts a Clipper numeric data type to a four‑byte character string formatted as a 32‑bit signed integer.
	FoxPro behavior: Generates an error.
	Action: Use the UDF of the same name in the procedure file BINFUNC.PRG found in the BINFUNC directory on the Migration Kit disk. This file contains UDFs for each of the five Clipper binary functions. Make these UDFs available to your program and there will be no need to change the Clipper function or code which relies on it.
	LASTKEY()

	See INKEY().
	LASTREC()XE "LASTREC()"§

	Level: 2
	Clipper behavior: LASTREC() returns the number of physical records in the active database.
	FoxPro behavior: Generates an error.
	Action: Replace this function with RECCOUNT().
	Example: Clipper
	num_recs=LASTREC()
	FoxPro

	num_recs=RECCOUNT()
	MEMOEDIT()XE "MEMOEDIT()"§

	Level: 2
	Clipper behavior: MEMOEDIT() allows editing of memo fields.
	FoxPro behavior: Generates an error.
	Action: Replace MEMOEDIT() with MODIFY MEMO.
	Comment: FoxPro's built-in memo editor handles editing, so you don't have to do all the programming that was necessary in Clipper. You can simply replace instances of MEMOEDIT with MODIFY MEMO, or mimic your Clipper program's behavior exactly, as in the example.
	You can do some fancy things with memo fields and browses, that were hard if not impossible to do in Clipper. See example 2.
	Also, memo fields can also be scattered with the FoxPro command SCATTER MEMVAR MEMO, making indirect reads easier to implement.
	Example: Clipper
	mNotes = MEMOEDIT(Notes,12,6,18,73,.T.)
	FoxPro

	DEFINE WINDOW TNotes FROM 12, 6 TO 18, 73
	SET WINDOW OF MEMO TO Tnotes
	MODIFY MEMO Notes
	Example 2: FoxPro

	*This sets up a BROWSE with a scrolling memo window
	*side by side on the screen
	DEFINE WINDOW Tbrow FROM 3,3 TO 15,15 ;
	TITLE "Recent Calls"
	DEFINE WINDOW Tcomment FROM 3,17 TO 15,78 ;
	TITLE "Comments"
	SELECT CALLS
	SET FILTER TO Analyst_id=Anal_id AND ;
	Contact_id=Rolodex->Contact_id
	SET WINDOW OF MEMO TO TCOMMENTS
	SET ORDER TO TAG CALLDATE
	MODI MEMO COMMENTS NOWAIT
	*Activate Window Tbrow
	GO TOP
	BROWSE FIELDS CALLDate LAST NORMAL ;
	NOMENU WINDOW TBROW
	DEACTIVATE WINDOW Tbrow
	DEACTIVATE WINDOW TComments
	RELEASE WINDOWS TBROW, TComments
	SET WINDOW OF MEMO TO Close Memo Comments
	SET FILTER TO ANALYST_ID=Anal_id
	SET ORDER TO TAG ACCOUN_NAM
	SELECT (cAlias)
	MEMOLINE()XE "MEMOLINE()"§

	Level: 2
	Clipper behavior: MEMOLINE() extracts a formatted line of text from a character expression or memo field.
	FoxPro behavior: Generates an error.
	Action: In FoxPro you would do this in two steps. You would use ATLINE() or ATCLINE() to determine the line number, and then use MLINE() to return to actual line.
	Example: Clipper
	mNotes=MEMOLINE(Notes,79,3)
	*Notes is the Memo Field
	*79 is the line length
	*3 is the line no
	FoxPro

	SET MEMOWIDTH TO 79
	mNotes=MLINE(Notes,3)
	MEMOREAD()XE "MEMOREAD()"§

	Level: 2
	Clipper behavior: MEMOREAD() returns the contents of a text file as a character string.
	FoxPro behavior: Generates an error.
	Action: Remove the command and replace with MODIFY FILE or MODIFY MEMO.
	Example: Clipper
	MEMOWRIT("Afile.txt.,Memoedit(Memoread("Afile.txt")))
	FoxPro

	MODIFY FILE Afile.txt
	Example 2: FoxPro

	* Use MODIFY FILE to edit a temporary file
	COPY FILE MyFile.txt TO MyTemp.txt
	MODIFY FILE MyTemp.txt
	IF NOT LASTKEY()==27
	SET SAFETY OFF
	COPY FILE MyTemp.txt TO MyFile.txt
	SET SAFETY ON
	ENDIF
	ERASE MyTemp.txt
	MEMORY()XE "MEMORY()"§

	Level: 2
	Clipper behavior: MEMORY(0) returns the amount of available memory.
	FoxPro behavior: Returns an error.
	Action: Replace with either MEMORY(), SYS(12) or SYS(1001).
	Comment: In FoxPro for MS-DOS, MEMORY() and SYS(12) return the amount of memory below 640KB which is available to execute an external program. SYS(1001) returns the amount of memory available to the FoxPro memory manager including high memory between 640K and 1MB that has been made available to DOS.
	In FoxPro for Windows, MEMORY() always returns 640 and SYS(12) returns 655,360.
	Example: Clipper
	mem_avail=MEMORY(0)
	FoxPro

	mem_avail=MEMORY()
	or
	mem_avail=SYS(12)
	or
	mem_avail=SYS(1001)
	MEMOTRAN()XE "MEMOTRAN()"§

	Level: 2
	Clipper behavior: MEMOTRAN() replaces carriage return/line feed pairs.
	FoxPro behavior: Generates an error.
	Action: Remove the function. If desired, replace with STRTRAN().
	Comment: By default, word wrap is on in FoxPro. However, if you wish to strictly emulate MEMOTRAN(), use the STRTRAN() function.
	Example: Clipper
	*By default, MEMOTRAN replaces all hard carriage
	*returns with semicolons, soft returns with spaces,
	*and eliminates all line feeds
	memo_var=MEMOTRAN(memo_var, "", "")
	FoxPro

	*Replace hard returns with semicolons
	memo_var=STRTRAN(memo_var,CHR(13),";")
	*Replace soft returns with spaces
	memo_var=STRTRAN(memo_var,CHR(141)," ")
	*Eliminate line feeds
	memo_var=STRTRAN(memo_var,CHR(10))
	MEMOWRIT()XE "MEMOWRIT()"§

	Level: 2
	Clipper behavior: Writes a character string to a specified disk file.
	FoxPro behavior: Generates an error.
	Action: Replace with COPY FILE or COPY MEMO.
	Example: Clipper
	Memowrit(MyVar)
	FoxPro

	REPLACE Test.notes WITH MyVar
	COPY MEMO Test.notes TO Myfile.txt
	MLCOUNT()XE "MLCOUNT()"§

	Level: 2
	Clipper behavior: MLCOUNT() counts the number of word‑wrapped lines in a character string or a memo field.
	FoxPro behavior: Generates an error.
	Action: Remove this function and replace it with the FoxPro equivalent MEMLINES()..
	Example: Clipper
	mNO=MLCOUNT(NOTES)
	FoxPro

	mNO=MEMLINES(NOTES)
	MLPOS()XE "MLPOS()"§

	Level: 2
	Clipper behavior: MLPOS() determines the position of a specified line number in a character string or memo field.
	FoxPro behavior: Generates an error.
	Action: Replace this function with the FoxPro MLINE() function.
	Comment: The system memory variable _MLINE stores the memo field offset for the MLINE() function.
	Example Clipper
	string = MEMOREAD("Temp.txt")
	? MLPOS(string, 40, 5)
	Foxpro

	SET MEMOWIDTH to 40
	string = Mydbf.Notes
	= MLINE(string,5,_mline)
	? _MLINE
	NETERR()XE "NETERR()"§

	Level: 1
	Clipper behavior: NETERR() determines if a USE, USE...EXCLUSIVE, or APPEND BLANK has failed in a network environment.
	FoxPro behavior: Generates an error.
	Action: Remove this function call. You can trap errors resulting from USE and USE... EXCLUSIVE or an APPEND BLANK with an ON ERROR routine. See the section titled "Error handling."
	NETNAME()XE "NETNAME()"§

	Level: 1
	Clipper behavior: NETNAME() returns the workstation identification.
	FoxPro behavior: Generates an error.
	Action: Replace NETNAME() with SYS(0).
	Comment: SYS(0) returns the network computer name and number when FoxPro is running on a network. A machine number and name must first be assigned by the network software and the network shell must be loaded. On Novell networks, add the following to the system login script:
	MACHINE="%USER_ID,%P_STATION,%LOGIN_NAME"
	If FoxPro is not running on a network or a machine number and name haven't been assigned by the network, SYS(0) returns a string of 15 spaces, followed by a pound sign (#), space, and zero.
	NEXTKEY()XE "NEXTKEY()"§

	Level: 2
	Clipper behavior: NEXTKEY() reads the next keystroke without removing it from the keyboard buffer and returns an INKEY() value (or a 0 if the buffer is empty).
	FoxPro behavior: Generates an error.
	Action: Remove this function and replace it with LASTKEY().
	Comment: Note that key assignment values in Clipper and FoxPro may differ. See Appendix G for a list of these assignments and change your code if necessary.
	Another FoxPro function that may be useful in this context is CHRSAW() which returns TRUE if a character is present in the keyboard buffer without affecting the buffer's contents.
	Example: Clipper
	IF NEXTKEY()=27
	RETURN .F.
	ENDIF
	FoxPro

	IF LASTKEY()=27
	RETURN .F.
	ENDIF
	PCOUNT()XE "PCOUNT()"§

	Level: 2
	Clipper behavior: PCOUNT() returns the number of actual parameters that have been passed to a procedure or user‑defined function.
	FoxPro behavior: Generates an error.
	Action: Replace PCOUNT with the equivalent function PARAMETERS().
	Example: Clipper
	prm_count=PCOUNT()
	FoxPro

	prm_count=PARAMETERS()
	PROCLINE()XE "PROCLINE()"§

	Level: 2
	Clipper behavior: PROCLINE() returns the source code line number from the beginning of the current program file.
	FoxPro behavior: Generates an error.
	Action: Remove the function and replace it with the FoxPro equivalent LINENO().
	Example: Clipper
	line_num=PROCLINE()
	FoxPro

	line_num=LINENO()
	PROCNAME()XE "PROCNAME()"§

	Level: 2
	Clipper behavior: PROCNAME() returns the name of the current program or procedure.
	FoxPro behavior: Generates an error.
	Action: Replace with the FoxPro equivalent PROGRAM().
	Example: Clipper
	prog_name=PROCNAME()
	FoxPro

	prog_name=PROGRAM()
	READEXIT()XE "READEXIT()"§

	Level: 2
	Clipper behavior: Toggles the up arrow and down arrow keys as READ exit keys.
	FoxPro behavior: Generates an error.
	Action: This command is unnecessary in FoxPro. If you want the up and down arrow keys to serve as exit keys in a read, create ON KEY LABEL commands to exit the read.
	Example: Clipper
	READEXIT(.T.)
	FoxPro

	ON KEY LABEL UPARROW CLEAR READ
	ON KEY LABEL DNARROW CLEAR READ
	READINSERT()XE "READINSERT()"§

	Level: 2
	Clipper behavior: Reports the current insert mode setting for READ and MEMOEDIT().
	FoxPro behavior: Generates an error.
	Action: Replace with INSMODE().
	Example: Clipper
	READINSERT(.T.) &&Turns on insert
	FoxPro

	= INSMODE(.T.) &&turns on insert
	READVAR()XE "READVAR()"§

	Level: 3
	Clipper behavior: READVAR() returns the name of the current GET or MENU variable.
	FoxPro behavior: Generates an error.
	Action: For GETs, replace READVAR() with VARREAD(). For menus, replace READVAR() with either PROMPT() or BAR().
	Comment: Clipper uses READVAR() primarily for debugging and as such is not appropriate in FoxPro. Use the Trace and Debug windows instead.
	Example: Clipper
	FUNCTION MyValid
	xvar=READVAR()
	xvalue=&READVAR()
	SELECT Pcodes
	SET ORDER TO &xvar
	SEEK xvalue
	IF !FOUND()
	RETURN .F.
	ELSE
	RETURN .T.
	ENDIF
	FoxPro

	FUNCTION MyValid
	xvar=VARREAD()
	xvalue=&READVAR()
	SELECT Pcodes
	SET ORDER TO (xvar)
	SEEK xvalue
	IF !FOUND()
	RETURN .F.
	ELSE
	RETURN .T.
	ENDIF
	RESTSCREEN()XE "RESTSCREEN()"§

	Level: 2
	Clipper behavior: RESTSCREEN() displays a previously saved screen region.
	FoxPro behavior: Generates an error.
	Action: Replace RESTSCREEN() with the equivalent FoxPro command RESTORE SCREEN.
	Comment: FoxPro has a sophisticated windowing manager that provides a more elegant mechanism for handling windows than saving and restoring screens. Commands such as DEFINE WINDOW, ACTIVATE WINDOW, SHOW WINDOW, and HIDE WINDOW provide an excellent alternative to a series of screen saves and restores.
	Example: Clipper
	RESTSCREEN(0, 0, 24, 29, OldScreen)
	FoxPro

	RESTORE SCREEN FROM MyScreen
	SAVESCREEN()XE "SAVESCREEN()"§

	Level: 2
	Clipper behavior: SAVESCREEN() saves a specified screen area to be redisplayed later.
	FoxPro behavior: Generates an error.
	Action: Replace SAVESCREEN() with the equivalent FoxPro command, SAVE SCREEN.
	Example: Clipper
	OldScreen = SAVESCREEN(0,0,24,79)
	FoxPro

	SAVE SCREEN TO MyScreen
	SCROLL()XE "SCROLL()"§

	Level: 2
	Clipper behavior: SCROLL() designates a section of the screen to scroll up, down, or blank out.
	FoxPro behavior: Generates an error.
	Action: Replace with the FoxPro command SCROLL.
	Example: Clipper
	SCROLL(4, 5, 21, 74, 0)
	FoxPro

	SCROLL 4, 5, 21, 74, 0
	SET CURSORXE "SET CURSOR"§

	Level: 3
	Clipper behavior: SET CURSOR OFF turns off the cursor during screen painting.
	FoxPro behavior: SET CURSOR OFF prevents the cursor from being displayed during a pending @ ... GET, @ ... EDIT, WAIT or INKEY() statement.
	Action: No change required.
	Comment: You may wish to remove SET CURSOR OFF commands. By default, FoxPro doesn't display the cursor while painting the screen. However, if SET CURSOR is OFF, the cursor will be suppressed during pending GETs, EDITS, and WAITs.
	SET FUNCTION

	See INKEY().
	SET KEYXE "SET KEY"§

	Level: 2
	Clipper behavior: SET KEY executes a procedure when a designated key is pressed. The expression in SET KEY is the INKEY() value for a key stroke.
	FoxPro behavior: Generates an error.
	Action: Replace SET KEY with the ON KEY LABEL command. Change the value of the expression specified in SET KEY to the equivalent FoxPro key label.
	Comment: If there is no key label equivalent to the value used in SET KEY, use the FoxPro command ON KEY which, like SET KEY, takes a numeric argument (though the number for a particular key may be different). However, this command is included for backward compatibility only.
	See Appendix G for a table which shows the key value assignments in FoxPro and Clipper.
	Example: Clipper
	SET KEY -1 TO my_prog && -1 is for the F2 key
	FoxPro

	ON KEY LABEL F2 DO my_prog && Recommended
	or
	ON KEY = 316 DO my_prog && 316 is for the F2 key
	SET RELATIONXE "SET RELATION"§

	Level: 2
	Clipper behavior: The TO keyword is repeated for each relation created in a single SET RELATION command.
	FoxPro behavior: The TO keyword is only used once, otherwise an error is generated.
	Action: Remove all the TO keywords except the first one.
	Comment: This is a very minor difference in syntax. These commands operate identically otherwise.
	Example: Clipper
	SET RELATION TO cust INTO invoice, TO state INTO state
	FoxPro

	SET RELATION TO cust INTO invoice, state INTO state
	SET SOFTSEEKXE "SET SOFTSEEK"§

	Level: 2
	Clipper behavior: SET SOFTSEEK toggles relative seeking on or off. A SOFTSEEK searches for the next higher key value when a SEEK fails.
	FoxPro behavior: Generates an error.
	Action: Remove the command. Replace it with the FoxPro equivalent SET NEAR.
	Example: Clipper
	SET SOFTSEEK ON
	FoxPro

	SET NEAR ON
	SET WRAPXE "SET WRAP"§

	Level: 2
	Clipper behavior: SET WRAP toggles wrapping in menus.
	FoxPro behavior: Generates an error.
	Action: Remove this command. It is unnecessary in FoxPro.
	Comment: FoxPro behaves as if SET WRAP is set on at all times.
	SETCANCEL()XE "SETCANCEL()"§

	Level: 2
	Clipper behavior: SETCANCEL() toggles program termination with Alt‑C, on or off.
	FoxPro behavior: Generates an error.
	Action: Remove the command. It is unnecessary in FoxPro. Most FoxPro programmers will either use ON ESCAPE or set a hotkey to bail out during application development.
	Example: Clipper
	SETCANCEL(.T.) &&Turns ALTC on for termination.
	FoxPro

	ON KEY LABEL F12 SUSPEND
	Or
	SET ESCAPE ON
	Or
	ON ESCAPE SUSPEND
	SETCOLOR()XE "SETCOLOR()"§

	Level: 2
	Clipper behavior: SETCOLOR() returns the current color setting or allows you to define a new color setting.
	FoxPro behavior: Generates an error.
	Action: Remove the command. Recoding using FoxPro color schemes is recommended. However, you may also substitute the SET('COLOR') function to get current color settings and use the SET COLOR TO command to define a new color setting.
	Comment: See the section titled "Colors" for information on using FoxPro color schemes.
	Example: Clipper
	cur_col=SETCOLOR()
	new_col=SETCOLOR("W+/B,W+/BG,N")
	FoxPro

	cur_col=SET('COLOR')
	SET COLOR TO "W+/B,W+/BG,N"
	SETPRC()XE "SETPRC()"§

	Level: 2
	Clipper behavior: SETPRC() sets the value of the internal PROW() and PCOL().
	FoxPro behavior: Generates an error.
	Action: Remove the function. Set the values of PROW() and PCOL() directly using the FoxPro system memory variables.
	Example: Clipper
	SETPRC(0,0) && Resets row & column back to beginning
	FoxPro

	_LMARGIN=0
	Or
	EJECT
	TEXTXE "TEXT"§

	Level: 2
	Clipper behavior: TEXT supports a TO PRINT and TO FILE option.
	FoxPro behavior: The TO PRINT and TO FILE options generate errors.
	Action: Remove TO PRINT and/or TO FILE. In FoxPro, you would SET CONSOLE OFF, and SET PRINTER TO to get the same effect.
	Example: Clipper
	TEXT TO PRINT
	<Text to print on screen and to printer>
	ENDTEXT
	FoxPro

	SET CONSOLE OFF
	SET PRINTER TO LPT1 && or File MyFile.txt
	TEXT
	<Text to print to printer>
	ENDTEXT
	TONE()XE "TONE()"§

	Level: 2
	Clipper behavior: TONE() sounds a speaker tone for a specified frequency and duration.
	FoxPro behavior: Generates an error.
	Action: Replace with the SET BELL TO and ?? commands.
	Example: Clipper
	TONE(150,18) && sounds bell for one second
	FoxPro

	SET BELL TO 150, 1 && sounds bell for one second
	?? CHR(7)
	TYPE()XE "TYPE()"§

	Level: 3
	Clipper behavior: TYPE() can, among other values, return arrray, error syntactical and error indeterminate.
	FoxPro behavior: TYPE() behaves like it does in Clipper Summer '87 except it does not return arrayXE "array"§, error syntactical and error indeterminate.
	Action: If you need to test for an array, replace the TYPE() function with the ISARRAY() function below created by Malcolm Rubel.
	Example: Clipper
	TYPE('array_1')
	FoxPro

	=ISARRAY('array_1')
	* Code sample from FoxPro 2.0 Power Tools
	* by Malcolm Rubel, Performance Dynamics Associates
	* Bantam Computer Books. All rights reserved.
	* Copyright (c) 1989, 90, 91
	* Function returns TRUE if named variable is an array.
	FUNCTION isarray
	PARAMETERS var_name
	PRIVATE var_name
	IF type(var_name + '[1]') = 'U' .and. ;
	type(var_name + '[1,1]') = 'U'
	RETURN(.F.)
	ELSE
	RETURN(.T.)
	ENDIF
	WORD()XE "WORD()"§

	Level: 2
	Clipper behavior: WORD() converts numeric parameters of the CALL command from type DOUBLE to type INT.
	FoxPro behavior: Generates an error.
	Action: Remove the function. This transformation is not necessary in FoxPro.

	Using the Program Analyzer
	What the Program Analyzer does
	New Analysis
	Processing files
	Disk space requirements
	Settings
	Open Analysis
	The Program Analyzer interface
	Filtering and SortingXE "Order"§XE "View"§XE "Sensitivity"§
	Jumping to potential problem areas from the Program Analyzer
	Using your own XE "Text editor, using your own"§text editor
	HelpXE "Help"§
	ReportsXE "Reports, Program Analyzer"§
	Viewing the issues databaseXE "View Rules"§
	After addressing the issues in the Program Analyzer list
	FoxPro Projects

	Appendices
	Appendix A: Effects of the SET COMPATIBLE command
	Appendix B: dBASE file types and what to do with them
	Appendix C: dBASE error numbers that represent different errors in FoxPro
	Error
	dBASE IV
	FoxPro
	67
	PROCEDUREs/FUNCTIONs nested too deep
	Expression evaluator fault
	95
	Source does not correspond to the object
	Statement not allowed in interactive mode
	103
	Command cannot be called
	DO nesting too deep
	130
	Command not allowed in format files
	Record is not locked
	178
	Function not found: <function>
	MENU has not been activated
	179
	File not open in current work area: <file>
	POPUP has not been activated
	225
	Right margin must be less than or equal to 255
	"<name>" is not a memory variable
	226
	Tab stops must be in ascending order
	"<name>" is not a file variable
	232
	ALIAS expression not in range
	"<name>" is not an array
	279
	PROMPTS for this popup have already been defined
	Menu/Popup was not pushed
	411
	Original memo cannot be larger than 64K
	RUN/! command string too long
	412
	Not a valid disk drive: <drive>
	Cannot locate COMSPEC environment variable
	1001
	Name longer than 10 characters
	Feature not available
	1002
	Invalid character
	I/O operation failure
	1003
	Missing end quotes for string
	Free handle not found
	1004
	Undefined symbol
	Use of invalid handle
	1010
	Name, constant, or expression expected
	Area size exceeded during compaction
	1011
	Invalid constant
	Area cannot contain handle
	1012
	Name expected (cannot be reserved word)
	OS memory error
	1098
	Nested function not allowed
	API function UserError() was called
	1101
	Only one column may be SELECTed in a subquery
	Cannot open file "<file>"
	1102
	Index name already exists
	Cannot create file
	1103
	Aggregate function not allowed in WHERE clause
	Illegal seek offset
	1104
	Number of view columns does not match number of SELECT columns
	File read error
	1105
	View column names must be specified
	File write error
	1106
	INTO is not allowed in a view definition
	Transaction in progress
	1108
	View is not updatable : <view>
	Picture too big
	1111
	View defined with GROUP BY cannot be used in a query with a GROUP BY clause
	Invalid file descriptor
	1112
	Incorrect data type for arguments in dBASE function
	File close error
	1113
	Incorrect number of arguments in dBASE function
	File not open
	1115
	An illegal table is referenced in a subselect FROM clause: <table>
	Invalid operation for CURSOR
	1117
	Views cannot be INDEXed : <view>
	Wrong length key
	1124
	Cursor not open : <cursor name>
	Key too big
	1126
	Different table name is specified in cursor declaration: <cursor>
	Record too long
	1127
	INTO clause not allowed in cursor declaration
	For/while need logical expressions
	1130
	Column name missing in AVG/MAX/MIN/SUM/COUNT
	'Field' phrase not found
	1134
	Comparison operator or key word expectd
	Variable must be in selected table
	1140
	Catalog table(s) locked by another user: <catalog table>
	FILTER expression too long
	1141
	Cannot DROP open database : <database>
	Invalid index number
	1145
	Invalid character length
	Must be a character, date or numeric key field
	1147
	SAVE TO TEMP clause not allowed
	Target is already engaged in relation
	1148
	Number of SAVE TO TEMP columns does not match number of SELECT columns
	Meaningless use of expression
	1149
	Column/field names must be specified in SAVE TO TEMP clause
	No memory for buffer
	1150
	Invalid string operator
	No memory for buffer
	1151
	Cannot ALTER views : <view name>
	No memory for filename
	1152
	Invalid INSERT item
	Cannot access selected table
	1153
	Numeric value too small
	Attempt to move file to different device
	1154
	No current row available for UPDATE or DELETE: <cursor>
	Invalid buffpoint call
	1155
	Can't create subdirectory for new database
	Invalid buffdirty call
	1156
	Name longer than 8 characters not allowed
	Duplicate field names
	1157
	Invalid unary operator
	Cannot update file
	1160
	This type of correlated subquery
	Not enough disk space for "<filename>"
	1161
	Catalog tables are read-only : <table>
	Too many records to BROWSE/EDIT in demo version
	1162
	Non-numeric array subscript
	Procedure "<procedure>" not found
	1163
	Memory variable and dBASE function not allowed in SELECT clause with UNION
	Browse table closed
	1164
	All SELECT columns must be inside an aggregate function
	Browse structure changed
	1201
	Cannot GRANT or REVOKE a privilege to yourself
	Too many names used
	1202
	Duplicate user ID
	Program too large
	1217
	Filename is same as existing synonym
	Picture error in GET statement
	1220
	Internal SQL utility error #3
	Invalid character in command
	1221
	Internal SQL utility error #4
	Required clause not present in command
	1223
	Table not found in the SQL catalog tables
	Invalid variable reference
	1225
	DBCHECK and RUNSTATS must be used with base tables
	Must be a memory variable
	1226
	File is encrypted
	Must be a file variable
	1229
	Catalog table Sysdbs does not exist
	Too few arguments
	1230
	File is not legal dBASE/SQL : <file>
	Too many arguments
	1231
	File not found in the current database
	Missing operand
	1245
	Internal SQL error #29
	Error in label field definition
	1282
	File encryption error
	Insufficient memory
	1249
	Unable to open the SYSDBS file in the SQL home directory
	Too many READS in effect
	Appendix D: Same errors with different numbers
	dBASE
	FoxPro
	Error Message
	29
	1705
	File not accessible
	180
	1621
	PAD has not been DEFINEd for this MENU
	207
	19, 114
	MDX file doesn't match database
	244
	1211
	Missing ENDIF for previous IF command
	245
	1211
	Missing ENDIF for previous IF/ELSE commands
	247
	1213
	Missing ENDCASE for previous DO CASE command
	249
	1211
	No previous IF to match this command
	250
	1213
	No previous DO CASE to match this command
	304
	1649
	No previous DO WHILE/SCAN/PRINTJOB to match this command
	305
	1649
	No previous PRINTJOB to match this command
	341
	1214
	Missing ENDTEXT for previous TEXT
	1275
	1282
	Insufficient memory
	Appendix E: Network and security libraries
	Appendix F: Clipper 5.x incompatabilities
	Appendix G: Key assignments
	FoxPro ON KEY LABEL KEY assignments
	INKEY() codes for FoxPro, dBASE and Clipper Summer '87

	Appendix I: FoxPro Reserved Words

	INDEX

